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Abstract

Traditional Synthetic Aperture Radar (SAR) platforms use narrow radar beams,

forcing the user to choose between two image types: larger, low resolution images or

smaller, high resolution images. SAR platforms also usually operate in a monostatic

configuration, transmitting and receiving radar echoes from the same antenna.

Switching to a wide-angle multistatic approach dramatically improves SAR per-

formance. The wide beam enables simultaneous high resolution image production over

large ground swaths. The multistatic configuration provides additional data diversity

and promotes platform survivability. Combining these two attributes results in an

approach termed Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR).

Unfortunately, WAM-SAR suffers from two significant implementation prob-

lems. First, wavefront curvature effects, non-linear flight paths, and warped ground

planes lead to image defocusing with traditional SAR processing methods. A new

3-D monostatic/bistatic image formation routine solves the defocusing problem, cor-

recting for all relevant wide-angle effects. This routine consists of a variable bistatic

tomographic imaging algorithm with near-field and warped ground plane corrections.

Inverse Synthetic Aperture Radar (ISAR) imagery produced using Radar Cross Sec-

tion (RCS) chamber data validates this approach.

The second implementation problem stems from the large Doppler spread in the

wide-angle scene, leading to severe aliasing problems. This research effort develops

a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms.

The SAR imaging process coherently combines the individual waveform ambiguity

functions, resulting in a |sinc|2 structure which places Doppler nulls at aliasing ar-

tifact locations. This approach does not increase the image formation algorithm’s

computational complexity. Both simulation and laboratory results demonstrate effec-

tive aliasing artifact mitigation, eliminating more than 99% of the aliased energy.
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Wide-Angle Multistatic

Synthetic Aperture Radar:

Focused Image Formation and

Aliasing Artifact Mitigation

I. Introduction

Synthetic Aperture Radar (SAR) was first developed in the 1950’s to provide

multi-dimensional radar imagery of fixed ground patches using a moving radar

platform (Sec. 3.1) [8, 74, 114, 133, 134]. While SAR images are typically lower in

resolution then optical images, the ability to collect SAR data during the day or

night as well as in all weather conditions has helped make SAR a critical player on

the modern battlefield as well as for remote sensing applications [36].

SAR systems transmit a series of radar pulses into the surrounding environment.

The echoes from each pulse are processed into individual One-Dimensional (1-D) range

profiles, denoting the scene’s response to the illuminating wave as a function of range.

Collectively, all pulse echoes span a time period known as the Coherent Processing

Interval (CPI) [116]. As the SAR platform moves, the changing platform location

changes the range profile. Using appropriate processing methods, the 1-D range

profiles can be combined to form multi-dimensional imagery. The distance covered by

the SAR platform during the CPI determines the synthetic antenna length and the

final image resolution [121].

1.1 Current SAR Limitations

Over time, SAR image quality has increased dramatically. Improved radar

hardware, digital processing, and new algorithms combine to yield substantially higher

resolution imagery than earlier systems. Modern SAR systems usually operate in

one of two data collection modes: stripmap (Sec. 3.4) or spotlight (Sec. 3.5) [65,
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100, 117]. In stripmap mode, the radar images vast ground patches at moderate-

to-low resolution. In spotlight mode, the radar produces high resolution imagery

of small ground patches. While some SAR platforms operate in either mode, they

cannot work in both simultaneously, forcing the user to choose: large, low resolution

images or small, high resolution images. Neither option is ideal in today’s increasingly

unpredictable battlefield environments.

1.1.1 Narrow Transmit Beams. One feature common to most stripmap

and spotlight SAR modes is a narrow transmit/receive beam, typically only a cou-

ple degrees wide. While the use of narrow beams greatly simplifies data collec-

tion and processing, it also precludes high resolution image formation over large

ground patches. Conversely, widening the beam makes feasible a whole host of

performance improvements over-and-above the promise of large, high resolution im-

ages. These benefits include high resolution imaging with narrowband waveforms

(Sec. 2.2.4) [116, 143], simultaneous SAR and Moving Target Indication (MTI) mis-

sions (Sec. 2.2.5) [44, 45, 66, 94, 143], and high resolution coherent and non-coherent

change detection (Sec. 2.2.6) [110,127,143].

1.1.2 Monostatic Data Collection. Traditional SAR platforms usually op-

erate in a monostatic mode, with a single radar platform acting as both transmitter

and receiver. While monostatic radar systems are relatively simple, they suffer from a

number of potential pitfalls. First, by broadcasting their presence with high powered

transmit waveforms, they are inherently vulnerable to both physical and Electronic

Warfare (EW) attacks [121]. Second, the proliferation of stealth technology designed

to minimize monostatic radar scattering means some militarily significant targets can-

not be reliably imaged using monostatic radars [73]. Third, SAR images often suffer

from shadowing effects, where large foreground scattering objects hide returns from

small background objects. Shadowing effects are particularly severe in urban and

forested environments [18].
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In recent years, there has been increasing interest in bistatic radar, where sig-

nals transmitted by one platform are received by another, geographically separated,

platform [116]. Bistatic collection geometries mitigate monostatic data collection

paradigm limitations including both platform survivability and shadowed target con-

cerns. A natural extension to bistatic radar is multistatic radar where several plat-

forms receive echoes from multiple platforms’ transmit waveforms. This procedure

dramatically increases data diversity over a given ground patch. Since each collection

geometry provides a unique set of shadows, fusion of multistatic SAR imagery would

dramatically reduce shadowing impacts as well as improve overall system redundancy.

1.2 WAM-SAR Research

Motivated by the traditional SAR limitations outlined in the preceding section,

this research effort focuses on a concept termed Wide-Angle Multistatic Synthetic

Aperture Radar (WAM-SAR). By combining both wide-angle and multistatic at-

tributes, WAM-SAR provides high resolution persistent surveillance of large ground

swaths while minimizing concerns about EW and target shadowing.

With so many perceived benefits, one wonders why the WAM-SAR concept

has not already been implemented. Although implementation challenges exist in a

number of different areas, two fundamental problems preclude high quality WAM-

SAR imaging. Solving these two problems forms the basis for this research effort.

By demonstrating solutions to these issues, this document motivates the transition of

WAM-SAR from research towards eventual implementation.

1.2.1 Focused Image Formation. The first WAM-SAR implementation prob-

lem addressed is focused image formation (Sec. 2.4). Traditional narrow-angle SAR

systems make many idealistic assumptions including perfectly linear platform flight

paths, planar ground patches, and plane wave illumination [65]. None of these as-

sumptions are valid in the wide-angle case, leading to defocused SAR imagery. While

a number of different algorithms have appeared to correct these issues individually,
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none of them is capable of handling the general 3-D wide-angle multistatic scenario

implied by WAM-SAR. Together with supporting material from Chapters III and IV,

Chapter V develops a new processing method, based on tomographic principles, ca-

pable of solving all these problems. Inverse Synthetic Aperture Radar (ISAR) data

(Chapter IV) from the Air Force Institute of Technology’s (AFIT’s) Radar Cross

Section (RCS) chamber is used to validate this new imaging method in Chapter V.

1.2.2 Aliasing Artifact Mitigation. Producing focused wide-angle imagery

is only part of the problem. By widening the radar’s beam, the ground echo’s Doppler

spread also increases substantially. As a result, the required sampling frequency along

the synthetic aperture becomes much higher. This requirement manifests itself as a

need for a higher radar Pulse Repetition Frequency (PRF). However, in the wide-angle

case, the required PRF is impractical (Sec. 2.5.1) [27, 36, 121]. Failing to meet the

PRF requirement results in undersampled data and causes Doppler aliasing in the re-

sulting imagery. Aliasing artifact mitigation is the second WAM-SAR implementation

problem and the focus of Chapters VI-IX.

Previous SAR aliasing artifact mitigation efforts primarily focus on spatial fil-

tering methods using active phased array antennas (Sec. 2.5.2.1) [27,56,141–143]. By

independently digitizing and recording the radar echoes from each antenna element,

digital spatial filters can be built, removing the aliasing artifacts. Unfortunately, even

simple phased arrays are very expensive to build and operate. The data storage and

communication bandwidth requirements for such an approach are also prohibitive.

Another class of anti-aliasing techniques revolves around waveform diversity

methods [27]. Despite the recent advent of diverse waveform generation hardware,

most SAR systems use Linear Frequency Modulation (LFM) waveforms. While there

has been increased interest in waveform diversity within the general radar community,

waveform diverse SAR applications are quite limited (Sec. 2.5.2.2).

The anti-aliasing technique introduced in Chapter VI uses randomized Contin-

uous Wave (CW) Stepped-Frequency (SF) waveforms to place Doppler filter nulls on
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top of aliasing artifacts, removing them from the imagery. As opposed to the phased

array approach, the SF waveform method only requires a two channel radar, reducing

antenna complexity, digitization hardware, communication system bandwidth, and

image processing routine complexity. Additionally, by using a CW frequency-hopped

radar signal, the transmission platform is much less vulnerable to attack, even when

operating in a monostatic mode.

1.2.3 Research Contribution Summary. Figure 1.1 provides a graphical

overview of the major research results. The user desires a wide-angle data collection

enabling simultaneous high resolution image formation over large ground swaths. Us-

ing conventional SAR processing methods, the wide-angle data is essentially useless.

The two images under the “conventional processing” heading illustrate this fact. The

top image shows a high resolution point scatterer image obtained from RCS chamber

data (upper left-hand scatterer in Fig. 5.16(a)). Total image area is 20 cm2. The point

scatterer is defocused and translated due to the wide-angle data collection. Appli-

cation of near-field corrections using the tomographic WAM-SAR processing method

results in the right-hand image (upper left-hand scatterer in Fig. 5.16(b)). In this

case, the scatterer is both well focused and correctly located.

The lower images in Fig. 1.1 have an area of 1 km2. The left-hand “conventional”

image shows a well focused scatterer at the scene center surrounded by eight large

aliasing artifacts (Fig. 7.26). Using WAM-SAR’s randomized SF waveform approach,

these artifacts are mitigated in the lower right-hand image (Fig. 7.26). Taken together,

the images in Fig. 1.1 illustrate WAM-SAR’s ability to produce focused alias-free high

resolution imagery over large ground swaths, encapsulating the contributions of this

research effort.

1.3 Notation and Terminology

In this document, most notation and terminology is defined as needed. None-

the-less, these initial notes should help avoid confusion:
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Wide-angle data collection

Conventional

processingprocessing

WAM-SAR

Focused imagery via

near-field tomography

Anti-aliasing via

waveform diversity

Chapters III-V

Chapters VI-IX

Figure 1.1: WAM-SAR improvements over conventional processing for wide-
angle data. Conventional processing of wide-angle results in defocusing (upper
left-hand image) and aliasing (lower left hand image). WAM-SAR processing
solves both the focusing (upper right-hand image) and aliasing (lower right-
hand image) problems.
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• The Latin abbreviation i.e. (for id est) means “in other words.”

• The Latin abbreviation e.g. (for exempli gratia) means “for example.”

• All vectors are column vectors and denoted with an overbar (e.g., ūTX, see (5.1)).

• In the text, vectors are written with a superscripted T indicating a matrix

transpose (e.g., ūTX = [ux, uy, uz]
T).

• Matrices are denoted with a bolded capital letter (e.g., Zc, see (6.46)).

• The symbol ∗ denotes convolution.

• The superscripted symbol ∗ denotes conjugation.

• The symbol ! denotes factorial.

• The symbol × denotes cross product.

• The symbol · denotes dot product.

• The symbol , denotes definition.

• The letter j is defined as
√
−1.

• Vertical bars | · | denote modulus of a complex number or magnitude of a real

number (e.g., |a + jb| =
√

a2 + b2). When surrounding a vector, these bars

indicate a Euclidean norm.

• The function δ(·) denotes the Dirac Delta function, a generalized function

• When paired with a scalar, δ denotes resolution or spacing (e.g., δx denotes

resolution in the x-direction, see (3.20)).

• When paired with a scalar, ∆ denotes extent (e.g., ∆kx denotes extent of avail-

able spatial frequency data in the kx-direction, see (3.20)).

• Fourier function pairs use lowercase letters in the time (spatial) domain and cap-

ital letters in the frequency (spatial frequency) domain (e.g., f(x) and F (kx)).

• Punctuation marks are included at the end of equations as dictated by the

contextual grammatical requirements. The periods or commas appearing at the

end of these equations have no mathematical significance.

7



In addition to defining mathematical symbols, there are a few terms warranting

mention. The terms “scene,” “scatterer,” and “target” all refer to objects being

imaged by the SAR sensor, although they each have nuances of meaning. The word

“scene” denotes a traditional SAR image containing terrain, vegetation, vehicles, etc.

The term “target” refers to an isolated object or set of objects, often contained within

an RCS chamber. The word “scatterer” indicates a specific point reflecting incoming

radar waves (Sec. 3.7). Both scenes and targets are typically composed of numerous

scatterers.

The terms “range” and “cross range” also merit introduction. Although there

are different kinds of “range” (Fig. 3.2), the term essentially denotes distance between

the radar and a scatterer1. The term “cross range” is defined orthogonal to the range

direction, parallel to the SAR platform flight path. In narrow-angle SAR, traditional

pulse compression techniques provide range resolution while SAR processing provides

cross range resolution (Sec. 3.9). In the wide-angle case, these effects are coupled

(Sec. 5.3). Chapters II and III use the typical narrow-angle SAR convention, defin-

ing range in the x-direction and cross range in the y-direction. Range resolution is

therefore denoted δx while cross range resolution is denoted δy. From Chapter V for-

ward, the 3-D wide-angle case necessitates taking a more general approach, allowing

arbitrary rotation of the 3-D range r, horizontal cross range h, vertical cross range v

coordinate system relative to the (x, y, z) image domain containing the scene.

1.4 Document Overview

The remainder of this document is divided into nine chapters. Chapter II begins

by providing a more detailed introduction to the WAM-SAR concept, illustrating the

substantial benefits and challenges inherent in this approach. It outlines the status

of current research efforts in the two problem areas: focused image formation and

aliasing artifact mitigation. Discovering and demonstrating solutions to these two

problems form the basis for subsequent chapters.

1This conceptual definition becomes more complex in the bistatic case (Sec. 5.1.2).
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Chapter III provides a detailed overview of Two-Dimensional (2-D) SAR data

collection and processing. It begins by reviewing key events in SAR history and

discussing the role of SAR systems in both military and non-military applications.

After introducing the two primary SAR operating modes (stripmap and spotlight),

the chapter illustrates how individual radar waveform echoes can be used to rep-

resent a scene’s spatial frequency content. This spatial frequency content is then

transformed into 2-D imagery using traditional Fourier Transform (FT) processing

methods. Narrow-angle approximations, sampling requirements, and resulting image

resolution are also introduced. Portions of Chapter III were published in [90].

RCS chamber data is particularly useful to the research effort, providing a rapid

and inexpensive method for collecting real radar scattering data in a laboratory en-

vironment. Chapter IV provides an introduction to RCS chamber design, data col-

lection, and calibration. It begins by identifying different chamber types, focusing on

the indoor far-field range, the type operated by AFIT. Data from AFIT’s chamber is

used in Chapters V and IX, validating the various research efforts. After discussing

specific limitations of AFIT’s chamber, Chapter IV reviews relevant data collection

and calibration procedures. The method entails collecting four data files for each

scattering target. Combining these files through a procedure known as “vector back-

ground subtraction” results in data approximating the target’s free-space scattering

signature. In addition to research efforts discussed in this document, the calibration

code processed RCS data in [43,76].

Chapter V solves the focused image formation problem, deriving and demon-

strating a Three-Dimensional (3-D) near-field monostatic/bistatic data processing

method capable of producing focusing imagery over warped surfaces using arbitrary

data collection geometries. The first few sections of Chapter V extend Chapter III’s

2-D far-field monostatic spatial frequency plane paradigm to the 3-D far-field bistatic

case. Wide-angle resolution metrics are also derived. These results are validated

using ISAR data from AFIT’s RCS chamber and correct errors from a recent publica-

tion [108]. The chapter then extends the image formation approach to accommodate
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radiative near-field scattering data. Although moving to the near-field breaks the

spatial frequency domain paradigm, the resulting image domain approach easily ac-

commodates the near-field situation, correcting not only for wavefront curvature, but

also for amplitude distortions caused by non-uniform antenna patterns and range

attenuation. The near-field imaging method is tested in a variety of 2-D and 3-D

situations. Most significantly, it corrects for warped ground plane effects in a 3-

D near-field bistatic scenario. This situation mirrors the WAM-SAR data focusing

problem.

Having solved the focused image formation problem, the research effort shifts to

address aliasing artifact mitigation. Chapter VI introduces a new waveform diversity-

based anti-aliasing technique for 2-D monostatic SAR. First, it re-introduces the anti-

aliasing problem from a grating lobe perspective. It then attacks the problem from an

information theory paradigm, demonstrating what information is required for alias-

ing mitigation without specifying how to obtain that information. With the new

information requirements, traditional LFM SAR waveforms are set aside in favor of

randomized SF waveforms. SF waveforms provide the required information, allowing

construction of Doppler filter nulls at aliasing artifact locations. The chapter con-

cludes by developing a procedure generating orthogonal randomized SF waveform sets

and minimizing cross-correlation effects while improving Doppler filter performance.

The anti-aliasing concept was first published in [87,88] and has been expanded in [89].

Chapter VII uses an idealized point scatterer simulator for testing the anti-

aliasing technique developed in Chapter VI. The chapter’s first half focuses on sim-

ulator development, illustrating the time and frequency domain behavior of digitized

LFM and SF waveforms. After combining the waveform simulation code with a 2-D

monostatic data collection geometry, the chapter moves on to test technique perfor-

mance using a set of realistic SAR platform parameters. Results are presented using

both qualitative SAR images and a quantitative energy metric, demonstrating tech-

nique effectiveness. This chapter’s results were published in [87–89] and independently

verified in [92].
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While Chapter VII provides impressive 2-D monostatic results, WAM-SAR re-

quires aliasing artifact mitigation in a more general 3-D monostatic/bistatic geome-

try. Unfortunately, implementation in these situations violates one of the technique’s

assumptions. None-the-less, Chapter VIII demonstrates effective aliasing artifact mit-

igation in non-ideal 3-D scenarios. The chapter begins by deriving an expression for

Doppler shift in 3-D bistatic geometries. This expression is used to calculate qualita-

tive and quantitative measures of technique effectiveness in different scenarios. These

scenarios include a high altitude 3-D monostatic platform, a stand-off transmitter

with a passive bistatic close-range receiver, and a multistatic circular-orbit data col-

lection. In each case, the technique performs well, eliminating more than 99% of

aliasing artifact energy.

Chapters VII and VIII demonstrate anti-aliasing performance using simulated

point scatterer data. However, real targets have substantially more complex returns.

Chapter IX validates SF waveform Doppler filtering performance on complex targets

using both a high-fidelity simulator (i.e., Xpatch [112]) and real RCS chamber data.

However, both the high-fidelity simulation data and RCS chamber data are calculat-

ed/measured in the spatial frequency domain, and are therefore essentially waveform

independent. As a result, a new technique was needed to convert post-matched filter

spatial frequency plane data into pre-matched filter SF waveform echoes. Developed

during this research effort and published in [84], this technique eliminates the need

for an expensive arbitrary waveform generator for validating SF waveform Doppler

filtering performance. Using the converted complex target spatial frequency data,

anti-aliasing performance is demonstrated on both Xpatch data [86] and measured

RCS chamber data.

Chapter X concludes the dissertation document. After reviewing critical goals

and accomplishments, it also suggests areas for future work. Following the conclusion,

several brief appendices provide background on the FT and key Matlabr files for both

point scatterer data simulation and SAR/ISAR image formation.
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II. Wide-Angle Multistatic SAR: Benefits & Challenges

Increasingly complex battlefield environments are placing greater demands on tac-

tical radar systems. Originally, Synthetic Aperture Radar (SAR) images were sim-

ply used to provide ground maps, illustrating the general terrain layout and localizing

fixed targets. Today, users want SAR imaging systems capable of providing persis-

tent, real-time surveillance of both stationary and moving targets over large ground

swaths. Additionally, they want imagery of sufficient resolution to facilitate not only

target detection but also target identification by image analysts and/or Automatic

Target Recognition (ATR) algorithms.

Using traditional SAR imaging platforms and techniques, it is not feasible to

simultaneously meet all user requirements. Radar platforms (e.g., Joint-STARS) often

collect SAR imagery by time-multiplexing SAR data collection with Moving Target

Indication (MTI) applications, limiting both synthetic aperture length (and therefore

image resolution) and the MTI system’s revisit rate. Other times, Unmanned Aerial

Vehicles (UAVs) (e.g., Predator) collect SAR data where the small image area provides

a narrow “soda-straw” target region view. While this approach is adequate for small,

high-interest regions, it is inadequate for wide-area surveillance. In short, the required

number of collection platforms, competing applications, finite frequency spectrum,

and extensive processing requirements preclude high resolution persistent surveillance

of large regions.

Addressing the inherent limitations of current SAR systems requires more than

incremental improvements in data collection and processing methods. It requires an

entirely new approach.

Such an approach has recently been proposed by Mr. Edmund Zelnio, chief

of the Air Force Research Laboratory’s (AFRL) Sensor ATR Technology Division

(SNA). Mr. Zelnio has proposed using a wide-angle monostatic imaging paradigm

that should be capable of addressing these issues [143]. This research effort takes this

paradigm one step further, examining the multistatic case, where both monostatic
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and/or bistatic radar echoes may be available. The resultant approach is termed

Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR).

This chapter continues by outlining WAM-SAR benefits. It also highlights spe-

cific implementation challenges, reviews the current literature status, and introduces

the proposed solutions.

2.1 WAM-SAR

The key enabler of WAM-SAR is the use of wide-angle radar beams [143]. In

general, a wide-angle SAR system can be defined as one whose angular extent ∆θ is

large enough that its cross range resolution is superior to its range resolution [105].

Angular extent denotes the span of azimuth angles, from the SAR platform to the

scene, observed during the data collection. Setting range resolution δx (3.20) equal

to cross range resolution δy (3.21) (after removing the small ∆θ assumption) and

solving for ∆θ yields the following mathematical criterion for when ∆θ is truly wide-

angle [104]1

∆θ > 2 sin−1

(

B

2fc

)

, (2.1)

where B is waveform bandwidth and fc is the center frequency. The ∆θ values used in

this document are large enough that the SAR sensor is wide-angle for any reasonable

bandwidth.

Figure 2.1 depicts the monostatic wide-angle radar approach. A single radar

platform transmits and extremely wide beam covering a large ground swath. The

beam is transmitted in a stripmap mode (Sec. 3.4) fashion to gain maximum coverage

area. When using stripmap mode, ∆θ is equal to antenna beamwidth. The monostatic

radar echoes are received, range-gated (establishing the ground swath width ∆R ,

Rmax−Rmin), and digitally sampled. These digital samples are then processed to form

1In the narrow-angle case, range is traditionally defined in the x-direction and cross range is
defined in the y-direction. Chapter V removes this assumption when examining the more general
wide-angle case.
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an arbitrary number of individual, high resolution, spotlight mode (Sec. 3.5) SAR

images at arbitrary locations within the beam footprint.

Figure 2.2 illustrates the full WAM-SAR architecture. The wide-angle data

collection principles remain identical to the monostatic case, but in WAM-SAR, more

than one platform is present. Each platform may act as a transmitter, receiver, or

both transmitter and receiver2. In the figure, both platforms act as transmitters and

receivers, flooding the same ground swath with Radio Frequency (RF) energy. All

three individual image regions are struck by RF energy from both platforms. Platform

1 is forming a monostatic image of the left-most target, while platform 2 is forming

both a bistatic image of the center target and a monostatic image of the right-most

target. The addition of bistatic imaging geometries adds a host of opportunities

and challenges. Some of these opporunities/challenges are addressed throughout the

reminder of this chapter and the rest of the document.

As a point of comparison, the theoretical benefits of the WAM-SAR approach

will be compared with current Global Hawk parameters/capabilities. Table 2.1 lists a

number of relevant Global Hawk parameters. Several of these parameters are used in

the next section, illustrating the advantages of the WAM-SAR approach over current

imaging radar capabilities. These comparisons are not intended to imply WAM-SAR

could be directly ported to the existing Global Hawk platform. They are simply used

as a point of reference for motivating WAM-SAR research efforts.

2.2 WAM-SAR Benefits

This section outlines the benefits achieved with the WAM-SAR approach. Many

of the concepts in this section are taken from discussions with Mr. Zelnio [143].

2.2.1 Large Coverage Area. One of the most significant advantages of the

wide-angle approach is the vast ground swath available for imaging. The Global

Hawk’s field-of-regard is listed as ±45◦, indicating the relatively narrow transmit beam

2The use of multiple platforms in this manner is also called netted radar [9].
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Figure 2.1: Monostatic wide-angle concept. A single radar platform
transmits an extremely wide beam (∆θ ≈ 90◦) over a large ground
swath. Monostatic echoes are received and processed to form a number
of small, high resolution, spotlight mode SAR images in parallel.
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Figure 2.2: WAM-SAR concept. One or more radar platforms trans-
mit an extremely wide beam (∆θ ≈ 90◦) over a large ground swath.
Monostatic and/or bistatic radar echoes are received and processed to
form a number of small, high resolution, spotlight mode SAR images
in parallel.
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Table 2.1: Global Hawk Parameters [32].
Parameter Value
Frequency X-band
Bandwidth 600 MHz
Peak Power 3.5 kW
Maximum Velocity 200 m/s
Maximum Ceiling 65,000 ft
Maximum Loiter Time 24 hours
Antenna Field-of-Regard ±45◦

Antenna Dimensions 14.4” x 49.5”
Stripmap Resolution 1 m
Strip Width 10 km
Spotlight Resolution 0.3 m
Maximum Range (for SAR) 200 km
Minimum Discernable Velocity (MDV) 2.1 m/s

can be steered up to 45◦ off boresight. WAM-SAR uses a 90◦ beamwidth to replicate

this coverage without the need for beamsteering. Due to the stripmap data collection

mode, this beamwidth translates directly to an angular coverage of ∆θ = 90◦ and is

significantly larger than any systems discussed in the literature [54,118].

Another important consideration in establishing the coverage area is the maxi-

mum range swath width ∆R. Although the maximum Global Hawk stripmap image

width is only 10 km, the goal of WAM-SAR is continuous surveillance of the entire

ground swath. To accomplish this task, Rmax = 200 km while Rmin falls between 20

and 50 km depending on the stand-off range needed to keep the radar platform safe

from attack. These values place ∆R in a range between 150-180 km. Combining

these values with the wide beamwidth give a total instantaneous ground swath area

of approximately 30,000 km2.

2.2.2 Persistent Coverage. While the large instantaneous ground swath is

certainly beneficial, another key advantage of the wide-angle approach is the persistent

coverage maintained on targets within the beam [143]. Since the beam covers the

entire ground swath simultaneously, the revisit rate is equal to the radar’s Pulse
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Repetition Frequency (PRF). This fact is especially important for MTI and tracking

applications as discussed in Section 2.2.5.

Assuming a linear flight path and the maximum (i.e., worst-case) Global Hawk

velocity of 200 m/s, a broadside target at a 50 km range remains in the beam for more

than eight minutes. A target at the maximum range of 200 km is illuminated for more

than 33 minutes. If the radar platform opted for a circular flight path, instead of the

traditional linear flight path, the 50-200 km ground swath range dictates a circular

swath with a 150 km diameter. The resulting 17,600 km2 ground swath could be

monitored continually for up to 24 hours, the maximum Global Hawk loiter time.

This spotlight mode SAR collection scenario would result in ∆θ = 360◦ while the

actual beamwidth could be reduced to approximately 62◦ due to the smaller, circular

ground patch.

2.2.3 High Resolution. WAM-SAR not only images vast ground swaths, but

also produces extremely high resolution imagery. Section 3.9 presents a method for

calculating the theoretical SAR image resolution using traditional approaches assum-

ing small ∆θ. Chapter V extends the resolution derivation to the wide-angle case.

In a typical SAR system, where ∆θ is only a few degrees, the range and cross range

resolutions are essentially independent since one is based on waveform bandwidth and

the other is based on antenna beamwidth. However, the small angle assumption used

in these calculations is not valid in the wide-angle case. The true resolution in each

dimension is determined both by the waveform and beamwidth characteristics.

Figure 2.3 illustrates the Impulse Response (IPR) functions for a wide-angle

∆θ = 90◦ SAR data collection. IPR functions represent the SAR image produced for

a scene consisting of a single point scatterer located at the scene center. Ideally, IPR

functions should be delta functions, but finite ∆θ and B cause IPR broadening. Sub-

figure (a) shows the B = 6 GHz (e.g., wideband) IPR, while subfigure (b) illustrates

the B = 600 MHz (e.g., narrowband) IPR. The ovals on top of each peak denote the

-4.0 dB IPR boundary.
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(a) B = 6 GHz

(b) B = 600 MHz

Figure 2.3: IPR functions for SAR data collections pictured in Fig. 3.8. The
ovals on top of each peak denote the -4.0 dB contour lines. Note, while the
-4.0 dB resolutions are similar, the reduction in bandwidth results in signifi-
cantly higher sidelobe levels (40.0 dB dynamic range).
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Table 2.2: Predicted vs. actual resolution for wide-angle SAR collections.
Predictions use (3.20) and (3.21) which contain an inherent narrow angle as-
sumption. Actual values are taken from IPR images in Fig. 2.3.
Relevant Collection Parameters Predicted Resolution Actual Resolution
Figures B, GHz ∆θ, deg δx, cm δy, cm δx, cm δy, cm
2.3(a) 6.0 90◦ 2.5 1.0 2.4 0.9
2.3(b) 0.6 90◦ 25.0 1.0 5.2 1.0

Table 2.2 illustrates the predicted and actual IPR resolutions (using the tra-

ditional resolution formulas in Sec. 3.9) for the wide-angle collections illustrated in

Fig 2.3. In this example, range is defined in the x-direction while cross range is de-

fined in the y-direction. This definition is consistent with an imaging target normal

to the SAR platform’s flight path.

The predicted resolution is quite accurate in the wideband (B = 6 GHz) case.

However, the resolution formulas fail to predict the appropriate range resolution δx

in the relatively narrowband (B = 600 MHz) case. In both cases, the resolutions

are significantly better than the Global Hawk’s 1.0 m stripmap and 0.3 m spotlight

resolutions, demonstrating the wide-angle imaging approach’s utility. It should also

be noted, while reducing the bandwidth by a factor of ten only reduced the range

resolution by a factor of two, it significantly increased the IPR sidelobe levels.

The ability to generate resolutions consistent with those in Tab. 2.2 requires

the SAR platform collect radar echoes over extremely wide angular extents. One part

of collecting this data involves using a wide beam, but the other part depends on

the target itself. If the target does not reflect energy (i.e., persist) over the entire

∆θ extent, the effective angular coverage of that particular target is reduced. This

limited persistence can be caused by a number of different effects including individual

target scattering characteristics and/or target shadowing. In fact, the only targets

whose signatures typically persist over such large angles are point scatterer-like objects

(e.g., dipole antennas, telephone poles, flag poles). More typically, scatterer returns

in complex scenes do not persist for more than 20◦ in azimuth [98].
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The limited persistence of real targets seems to limit the resolution, and thus

the usefulness, of a wide-angle SAR platform. However, this observation is incor-

rect. Consider a flat metallic plate. The plate’s peak monostatic Radar Cross Section

(RCS) occurs when the wave propagation vector is perpendicular to the plate’s sur-

face. As the illumination angle changes, the RCS decreases based on the illumination

wavelength and plate dimensions. It is well known the mainlobe width ∆ζ of the

plate’s specular reflection (i.e., the plate’s persistence) is given by [73]

∆ζ =
λc

2W
, (2.2)

where W is the plate width and λc is the center wavelength. The amount of angular

data available to the SAR sensor is bounded by the scatterer persistence, thus ∆θ ≤
∆ζ no matter what collection geometry is being used. Assuming the SAR sensor

collects the full ∆ζ scattering data, (3.21) may be rewritten as

δy =
λc

2∆ζ
= W, (2.3)

implying the cross range resolution is equal to the true plate width. This result

indicates the imaging system still achieves sufficient resolution to resolve the scatterer,

despite the limited scatterer persistence. In other words, high resolution is not needed

to image a large target.

Despite this limited resolution, there is still an inherent advantage in setting

∆θ ≫ ∆ζ. While the return from a given large scatterer may be confined to a few

degrees, the user has no prior knowledge of what orientation angle allows reception

of this limited target return. Large ∆θ increases the odds the platform collects the

critical few degrees of target return and thereby resolves the target.

In short, a wide-angle sensor with ∆θ ≈ 90◦ should produce images capable

of resolving targets only a few centimeters in size, despite operating in stripmap
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mode. This ability represents a significant improvement over existing SAR platform

capabilities.

2.2.4 Narrowband Waveforms. In addition to producing extremely fine reso-

lution over large coverage areas, the WAM-SAR approach holds promise for achieving

these gains using relatively narrowband waveforms. As shown in Tab. 2.2, using

wide-angle data collections, high range resolutions are still possible even with rela-

tively narrow waveform bandwidth. Perhaps the greatest cost associated with this

approach is higher sidelobe levels (Fig. 2.3).

There are many reasons why narrowband waveforms are desirable. One of the

most significant is a dramatic simplification of radar operation. Wideband waveform

transmission presents difficulties for an antenna designer. Perhaps most challenging

is antenna pattern variability as a function of frequency [68].

Another key reason narrowband sensors are often preferred over wideband sen-

sors is the frequency band is a finite resource [116]. In a battlefield environment, a

collection of military and non-military systems broadcast signals at a range of different

frequencies. If these frequencies interfere with those used by the SAR platform, extra-

neous signals may mask the radar echoes and degrade image quality. This problem is

often encountered in FOliage PENetration (FOPEN) applications where the combi-

nation of relatively low radar frequencies (UHF/VHF) and wide percent bandwidths

lead to significant interference from radio and television transmitters [118].

A final point in favor of narrowband waveforms is related to thermal noise.

The SAR sensor must collect sufficient target energy to overcome detector’s thermal

noise. Since thermal noise is linearly related to the receiver bandwidth (and the

receiver bandwidth is set based on the waveform bandwidth), a reduction of waveform

bandwidth results in a reduction in noise power and thus an increase in Signal-to-Noise

Ratio (SNR).

Despite the inherent advantages of narrowband waveforms, it should be reit-

erated that their use in wide-angle SAR results in sparse spatial frequency data (as
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illustrated by Fig. 3.8(b)) and can result in high sidelobe levels. Further details about

this problem as well as a taxonomy of possible solutions are discussed in [104].

2.2.5 Simultaneous SAR/MTI. Despite the clear advantages of wide-angle

SAR imaging, a true multi-mode radar platform must also demonstrate a robust MTI

capability. Unfortunately, the waveforms and processing techniques associated with

traditional MTI systems are quite different than those used with SAR systems [116,

121]. Recent research in focusing moving targets within SAR images provides hope

of implementing robust MTI within the WAM-SAR framework.

MTI systems traditionally transmit narrow RF beams into the environment,

keeping the Doppler spread of the stationary ground clutter as small as possible. This

approach allows moving target detection using a Doppler filter bank. Distinguishing

targets from clutter becomes harder as a target’s relative velocity becomes smaller.

This relationship leads to a Minimum Discernable Velocity (MDV) criterion, setting

a lower bound on detectable relative target velocities. However, WAM-SAR’s wide

transmit beam dramatically increases the clutter’s Doppler spread, and thus increases

the MDV achievable via traditional MTI processing. Clearly, the Doppler filter bank

approach is inadequate.

Despite the limitations of traditional MTI approaches, it may be possible to

perform simultaneous SAR/MTI processing. With relatively modest changes, the

SAR processing algorithm’s “fixed” target assumption (needed to image the stationary

ground swath) can be replaced with a “moving” target assumption leading to focused

moving target images against a blurred background [94,143].

Recent work in the SAR field shows several techniques can form focused mov-

ing target images. These techniques include everything from time-frequency distri-

butions [13] to Space Time Adaptive Processing (STAP) principles [44, 45]. One of

the most promising approaches produces a series of SAR images focused to different

motion parameters [66]. This method results in an image bank, similar to the Doppler

filter bank used in traditional MTI. However the processing is performed, the ability
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to detect and track moving targets using a SAR sensor provides an ideal zero MDV

capability while achieving continuous coverage of a very large areas due to the large

beamwidth.

The persistent coverage and high revisit rates implied by the wide-angle beam

(Section 2.2.2) address another key MTI system limitation. Since typical MTI systems

localize the target in azimuth and elevation using very fine beams, they must step

between resolution cells over time. This stepping limits the amount of time the beam

dwells on one particular target, increasing the likelihood a target track could be lost.

However, WAM-SAR’s continuous scene illumination allows simultaneous detection

and tracking of targets in different locations.

While this research effort does not explicitly address the issues and challenges

associated with successful simultaneous SAR/MTI implementation, the possible ben-

efits help motivate the pursuit of more fundamental SAR image formation issues

(Sec. 2.4 and Sec. 2.5).

2.2.6 Change Detection. Another significant SAR application made possible

by a wide-angle data is known as change detection. While traditional approaches for

SAR image analysis involve interpretation of a single SAR image, change detection

assumes interesting objects change from one image to the next.

Change detection is performed by combining data from subsequent radar passes

over the same ground swath. A collection of different change detection processing

techniques are presented in [110]. Unfortunately, due to the angular variations in

SAR imaging target signatures (especially those of natural features such as grass,

trees, etc.), effective change detection requires multiple SAR collections traversing al-

most exactly the same flight path [127]. Even if it were possible to precisely replicate

the data collection scenario, variability in image speckle limits performance. However,

using a wide-angle collection promises to minimize these problems [143]. While it is

impossible to fly exactly the same path on two subsequent collections, the extremely

large WAM-SAR angular data diversity helps smooth out geometric variations, pro-
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viding a more uniform data set. Additionally, use of large numbers of radar pulse

echoes helps minimize speckle, increasing correlation between the two images and

improving change detection performance.

2.2.7 Passive Reception. Up to this point, the perceived WAM-SAR benefits

have been applicable to both monostatic and bistatic collection geometries. This

section, as well as Sec. 2.2.8, is explicitly tied to a bistatic/multistatic geometry.

Radar platforms are inherently vulnerable to electronic or physical attack due

to their use of active sensing technology, transmitting a radar waveform, broadcasting

the sensor’s location. Since radar wave amplitude decays as a function of propagation

distance, a military target can often sense the transmitted radar beam long before the

target echoes are strong enough to be sensed by the radar platform. This situation

allows the target to engage the radar, hide beneath foliage, or otherwise interrupt the

radar mission.

It is possible to dramatically reduce radar vulnerability using a stand-off trans-

mitter and a passive short-range bistatic receiver. This concept uses a powerful,

long-range radar transmitter to illuminate the given scene. A small, cheap, fast, low-

altitude, receive-only radar platform can then be flown relatively close to the scene.

Since the receive platform doesn’t transmit, it is much less vulnerable to detection.

2.2.8 Multistatic Data Fusion. Another WAM-SAR advantage is the possi-

bility of performing multistatic data fusion. With multiple transmitters broadcasting

over the same ground swath, a collection of echoes, both monostatic and bistatic,

are available to each radar receiver. Having simultaneous target echoes from mul-

tiple observation and/or bistatic angles is beneficial because targets have different

monostatic and bistatic scattering characteristics. These returns could be combined

coherently or non-coherently, producing more complete ground swath images than

currently possible.

25



One straight forward application of monostatic/bistatic image fusion relates

to SAR image shadowing effects. Since these shadows are dependent on collection

geometry, having images from multiple geometries allows generation of composite im-

ages virtually free from shadow effects. Less intuitive are ATR applications where

shadows provide some of the best target discrimination information. With multi-

ple target shadows from multiple orientations, target identification could be greatly

enhanced [18,83].

Multistatic radar data fusion may be particularly beneficial for detection and

imaging of stealthy targets. A large part of RCS reduction centers around reducing a

target’s monostatic RCS by reflecting incident radar energy in non-monostatic (i.e.,

bistatic) directions [73]. Placing a network of bistatic receivers around a target region

increases the odds of intercepting larger stealthy target bistatic echoes, aiding in

detection, tracking, identification, and imaging [9].

Finally, high resolution SAR images do not look like optical images of compara-

ble resolution. Radar images tend to show an object’s edges whereas optical images

show “filled-in” targets. Various monostatic and bistatic collection angles provide

high resolution images of different parts of the same target. It is possible that intelli-

gently combining these images would make high resolution radar images could appear

more “optical,” simplifying the job of imagery analysts and/or ATR algorithms.

2.3 Implementation Challenges: Unaddressed Issues

The expected advantages of WAM-SAR are significant. This observation begs

the question of why such an approach has not been previously implemented. Part of

the reason may simply be due to radar culture [143]. The basic wide-angle concept

is contrary to common thinking within the field. Yet culture is not the only thing

standing in the way of wide-angle SAR platforms. There are also serious technical

challenges. Some of these challenges form the core of this research effort. It is hoped

that successfully addressing these challenges motivates WAM-SAR concept transition

from theoretical research towards hardware implementation.
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Before outlining the problems solved in this research effort, it is important to

point out a few implementation issues not explicitly examined. These issues include

the air-to-ground communication bandwidth requirements, data storage requirements,

radar transmit power requirements, and synchronization procedures for bistatic data

collections. Each of these issues are briefly addressed in the following several para-

graphs.

The basic WAM-SAR approach will assume real-time processing is performed

at a ground station. This assumption is beneficial for several reasons. First, it allows

powerful ground-based computers to handle the processing load associated with multi-

ple simultaneous missions. Second, it makes the raw data available for more advanced

post-processing techniques. Third, it allows the ground station access to echoes from

all operating platforms, facilitating data fusion. Unfortunately, down-linking the raw

data to such a processing facility requires an extremely wideband communication

system. Although communication system performance has been steadily improving,

much work remains to be done in this area.

Related to the required communication bandwidth are the massive data storage

requirements. Although this research does not directly address either the required

communication bandwidth or data storage requirements, the results of this research

remove the phased array antenna requirement (Chapter VI), dropping the communi-

cation bandwidth and data storage requirements by orders of magnitude.

Finally, a requirement for any bistatic radar is maintaining precise synchro-

nization between the transmitter and receiver. The time standard provided by the

Global Positioning System (GPS) holds promise for providing the required synchro-

nization [131]. Recent success in narrow-angle bistatic imaging experiments indicates

this problem is not intractable [129].
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2.4 Implementation Challenges: Focused Image Formation

Section 2.2 provided an overview of potential WAM-SAR benefits, yet these

applications presuppose the ability to collect and process radar data into high quality

SAR imagery. Simply collecting and processing raw wide-angle data into high res-

olution images is a significant problem. Without a demonstrated ability to perform

these basic, but critical tasks, the loftier goals of simultaneous SAR-MTI and change

detection remain out of reach. For these reasons, this research focuses on addressing

foundational imaging issues. The remainder of this chapter outlines these problems

in greater detail, reviews previous work in these areas, and introduces solutions de-

veloped in the research effort.

One of the major challenges inhibiting wide-angle SAR image production is the

basic image formation algorithm itself. The standard Fourier-based image formation

algorithm (Section 3.11) is based on multiple idealistic assumptions which fall apart

in the wide-angle collection scenario. The result is unfocused SAR imagery failing to

achieve the resolutions in Tab. 2.2. Addressing these assumptions and providing a

simple, practical algorithm for SAR data focusing is a critical step in demonstrating

WAM-SAR feasibility.

2.4.1 Problem Introduction. Perhaps the single most significant challenge

to producing focused WAM-SAR imagery is dealing with Range Migration (RM).

RM results from the curvature of the ElectroMagnetic (EM) wavefront and causes an

overall reduction in image quality, contrast, and resolution. In the EM community,

RM effects are more commonly known as radiative near-field effects since they relate

directly to far-field assumption validity. This assumption is used to derive the def-

inition of RCS as well as basic SAR and Inverse Synthetic Aperture Radar (ISAR)

algorithms. Chapter V, which solves the radiative near-field/RM imaging challenge,

examines this problem from the EM perspective, adopting the “near-field/far-field”

terminology. None-the-less, since RM is the more common term within the SAR

community, it is used throughout the remainder of this section.
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RM is considered problematic when the difference in range between targets at

the beam center and beam edge exceed the radar’s range resolution δr [100]. From

simple trigonometry, assuming a beam normal to the SAR flight path, this criterion

mandates

r ≤ δr

[

cos(∆θ/2)

cos(∆θ/2) − 1

]

, (2.4)

where r is the range to the scatterer from the synthetic aperture center. Using a 90◦

beamwidth and a range resolution of δr = δx = 5.2 cm (taken from Tab. 2.2), (2.4)

gives a range of r = 12.6 cm. This value represents the maximum scatterer range

where RM effects can be ignored, and is clearly impractical for any real SAR system.

Not correcting for RM results in significant image degradation, causing smearing and

inhibiting high resolution image formation.

Understanding the changing geometric relationships between the radar and the

scatterers throughout the synthetic aperture is critical to quantifying and eliminating

RM effects. Defining the mathematical relationship between the radar and individual

scatterers requires selecting a suitable coordinate system. Consider an individual scat-

terer located at (x0, y0), where the x-coordinate refers to range and the y-coordinate

refers to cross range. The coordinate system origin is located at the synthetic aperture

center. If the radar flies a linear flight path, the radar location at any point in time

can be specified by (0, u) where u is the instantaneous cross range radar platform

location. Using the pythagorean theorem, the range r can be calculated as

r =
√

x2
0 + (y0 − u)2. (2.5)

As shown in [117], this equation represents a half-hyperbola. Figure 2.4 shows several

range/round trip delay hyperbolas for a collection of three point scatterers.

Equation (2.5) implies the energy reflected from an individual scatter through-

out a SAR collection is spread over a range hyperbolic arc. Producing a well focused

image requires correcting for this shape by collecting this hyperbolic energy arc into

a single point at the true scatterer location. The ability (or inability) of a SAR pro-
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Figure 2.4: Round trip delay (equivalent to range) for
three point scatterers as a function of radar location along
a linear flight path. The hyperbolic shape is determined
by point scatterer location relative to the synthetic aper-
ture.

cessing algorithm to produce imagery free from RM effects is directly tied to how well

this hyperbolic relationship is modeled. Note, even the hyperbolic range relation-

ship presupposes a linear flight path, making it inadequate for full WAM-SAR image

focusing.

Development of SAR algorithm RM correction has been largely driven by the

spaceborne SAR community. This motivation results from the large stand-off ranges

and large ground swaths inherent in these applications, making RM a much larger

problem. None-the-less, while space-based systems do have large footprints, they do

not have beamwidths approaching 90◦ as desired in WAM-SAR. This fact shows why

even spaceborne SAR algorithms are not adequate for WAM-SAR data processing.

RM is not the only defocusing problem plaguing a true wide-angle processor. By

virtue of the long synthetic aperture resulting from the wide-angle collection, other

long-held SAR image formation assumptions must be relaxed. Traditional SAR image

formation often assumes the radar platform traverses a linear flight path over perfectly
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Figure 2.5: Data collection plane comparison. Plat-
form flies a linear flight path into the page. Traditional
SAR images are formed in the slant plane (defined by the
flight path and image center) and then projected into the
image plane. This process assumes the scene is flat, while
the true terrain exhibits height variation.

flat ground. In this case, the resulting 2-D image is formed in the slant plane, defined

by the linear flight path and the scene center [65]. The user usually desires a final result

in the ground plane, representing the scene as it would appear from an overhead view.

This requirement is typically met using a simple trigonometric correction, projecting

the slant plane image into the ground plane. Figure 2.5 illustrates these relationships.

True SAR platforms do not fly perfectly linear paths, especially over the long

distances needed to produce high resolution images. This non-linear flight path means

the slant plane definition changes for each Coherent Processing Interval (CPI) pulse,

leading to defocusing in both the slant plane and resulting ground plane imagery.

These effects can be reduced through a procedure known as out-of-plane correction.

Out-of-plane correction individually projects the spatial frequency domain data from

each CPI pulse into the desired slant or ground plane prior to image formation,

resulting in an orthographically correct image [65]. Unfortunately, the procedure

assumes the imaged terrain is in the far-field and the Earth is perfectly flat.

In addition to defocusing, the flat-Earth assumption leads to an effect known

as layover [36, 65]. For scatterers outside the ground plane, the range measured by
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each CPI pulse is somewhat different than if the target was in the ground plane. In

the typical airborne SAR scenario, a tall scatterer such as a hill or top of a building

appears closer to the radar, causing the image of such structures to “lay over” towards

the radar in the resulting imagery. Using the scenario depicted in Fig. 2.5, the amount

of layover (range error) in the image plane may be estimated as

ǫ = z tan(φ), (2.6)

where ǫ denotes layover magnitude, φ is the elevation angle, and z is the height

(i.e., z-coordinate) of a given scatterer. This layover effect means the apparent target

location is somewhat incorrect and could inhibit the use of precision guided munitions.

Given prior knowledge of ground contours (usually available from existing digital

elevation maps or contour maps) there have been attempts to correct for layover

using a collection of “tiepoints.” These tiepoints define a polynomial used to warp

and resample the slant plane image [42,101]. Although these initial approaches have

been somewhat streamlined, they still require significant operator interaction and

computational resources [36].

2.4.2 Current Literature Status. WAM-SAR algorithm development re-

quires examining the focusing problem from first principles, incorporating the non-

ideal nature of a SAR collection stretching over more than a hundred kilometers.

From the current literature, it is clear this approach requires careful attention to

items such as the type of waveform transmitted, the domain where correction factors

are applied, and the necessity/accuracy of any required interpolation schemes. It is

also necessary to incorporate knowledge of Three-Dimensional (3-D) and bistatic ge-

ometry effects. The next several subsections introduce the benefits and limitations

from a series wide-angle SAR data processing algorithms. Each method fails to ad-

dress key WAM-SAR scenario components. The most promising approach, based on

tomographic principles from the medical imaging community, is extended to meet all

WAM-SAR requirements in Chapter V.
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2.4.2.1 Range-Doppler Algorithm. Up until the early 1990s, most

precision SAR processors relied on the “range-Doppler algorithm” with certain mod-

ifications to address varying RM levels [12]. The basic range-Doppler approach is

similar to the Fourier Transform (FT) techniques introduced in Section 3.11. Instead

of using data in the 2-D spatial frequency domain, the collected data is compressed

(Fourier transformed) in the range dimension prior to any attempt at focusing. This

operation results in a collected data set where the range coordinate is in the image

domain and the cross range coordinate is in the transform (frequency) domain. These

domains give the basic algorithm its name. Time-domain interpolation techniques

are then used for partial RM correction. After interpolation, azimuth compression is

performed resulting in a complex image. Unfortunately, the range-Doppler approach

makes several assumptions, the most significant being scatterers are approximately

normal to the SAR flight path [12]. Since wide-angle collection necessarily implies

collecting data from large angular swaths, this approach is inadequate for WAM-SAR.

One method of alleviating range-Doppler algorithm assumptions is called Sec-

ondary Range Compression (SRC) [135]. This approach involves generating a new

RM compensation kernel at each range value. Unfortunately, even with its substantial

computational burden, SRC does not completely correct for RM effects, and therefore

leads to defocusing in wide-angle imagery.

2.4.2.2 Wide Angle SAR Algorithm. In [49] and [50], Franceschetti,

et al., developed algorithms explicitly for a wide-angle processor. They refer to their

algorithm as the Wide-Angle Synthetic Aperture Radar (WASAR) algorithm. Their

work uses a parabolic approximation to the hyperbolic relationship given in (2.5).

While more accurate than the linear or quadratic approximations used in many lower

precision systems [24, 100], the parabolic approach still lacks the complete rigor of

the full hyperbolic correction and is therefore not appropriate for the extremely large

beamwidths being examined in this document.

33



2.4.2.3 Range Migration Algorithm. In 1991, Cafforio, et al., used

techniques from the seismic surveying community to address RM effects in a new

way [26]. Common names for techniques using this approach include the ω − k al-

gorithm [26], the wave-number domain algorithm [12], the wavefront reconstruction

algorithm [119], and the Range Migration Algorithm (RMA). The RMA algorithm

represents a significant departure from the range-Doppler approach. The idea recasts

the basic SAR problem from one which uses a radar to transmit and receive radar

echoes into one where the radar simply listens to transmissions from point “radia-

tors” distributed throughout the scene. The scatterers within the scene are modeled

as pulsed waveform emitters. The pulses, originating from the scatterers themselves,

are assumed to travel at a velocity of one-half the speed of light [26]. These assump-

tions ensure the pulses received by the radar arrive at the same time they would in

the true scenario. RMA’s point radiator model assumes an inherently monostatic

collection geometry.

RMA algorithm development was originally based on the 2-D wave equation to

effectively model the spherical propagation of radar waves. In [12], the algorithm is

derived without using the wave equation. The initial SAR processing projects the

data into the spatial Fourier domain. A change of variables (interpolation) procedure

called Stolt interpolation then implements RM corrections [122]. This mapping places

the data on a rectangular grid where a simple 2-D FT produces the final image.

The key strength of the RMA approach is it provides exact correction for mono-

static RM effects under a few key assumptions. These assumptions include a perfectly

linear flight path and a fixed Earth. For the wide-angle collection geometry required by

the target platform, neither assumption holds true. Over the long synthetic aperture

required by WAM-SAR, the Earth’s curvature produces a curvature in the “linear”

flight path. Additionally, the long time it takes to traverse this aperture means Earth

rotation effects must also be incorporated. Cafforio, et al., [26] mention these effects

but do not provide a rigorous method for dealing with them. Also, RMA requires

processing data in a stripmap-like fashion, referencing each pulse along the synthetic
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aperture to a fixed radius (Section 3.4). This procedure imparts an azimuth frequency

chirp to individual scatterers and can have negative impacts on the cross range sam-

pling requirements (i.e., PRF requirements) for RMA-based SAR processors.

2.4.2.4 Chirp Scaling Algorithm. Another SAR processing technique

deserving mention is chirp scaling [12, 107]. Unlike the range-Doppler or RMA ap-

proaches, chirp scaling does not begin by compressing the samples in range (i.e.,

matched filter application). It performs RM correction directly on uncompressed Lin-

ear Frequency Modulation (LFM) chirps using a phase multiply, and thus requires

LFM waveforms. Chirp scaling’s key advantage is its ability to address limited RM

effects using only Fast Fourier Transforms (FFTs) and multiplies, forgoing the need

for interpolation. As shown in [107], the accuracy of chirp scaling compares favorably

with range-Doppler approaches using SRC methods. As with RMA, chirp scaling also

uses the stripmap fixed range referencing procedure increasing cross range sampling

requirements and complicating the aliasing problem (Sec. 2.5).

2.4.2.5 Widefield Polar Format Algorithm. In 2004, a modified form

of the traditional Polar Format Algorithm (PFA) (Sec. 5.2.1) dubbed the Widefield

Polar Format Algorithm (WPFA) was introduced [29]. Similar to RMA, WPFA claims

the ability to perfectly correct for RM effects. Instead of using Stolt interpolation,

WPFA uses a spatially varying data storage approach to account for RM. Since WPFA

is merely an extension of PFA, it provides focusing to a point (i.e., spotlight process-

ing), eliminating the azimuth chirp observed in radars which focus to a line (i.e.,

stripmap processing). This paradigm shift reduces the Doppler bandwidth of WPFA

data relative to RMA data and produces RMA quality imagery without the RMA

computational burden. Since WPFA’s is to replicate RMA-quality imagery, WPFA

suffers from many of RMA’s limiting assumptions.

2.4.2.6 Back-Projection Algorithms. The final relevant category of

SAR imaging algorithms are based on tomographic principles used by the medi-
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cal imaging community. These techniques were first applied to SAR processing in

1983 by Munson et al. [99]. Unlike the algorithms presented previously, tomographic

imaging techniques are applied on a pulse-to-pulse basis in the time (range) domain,

making them ideal for incorporating non-uniformly spaced synthetic aperture sam-

ples. They work by serially processing a collection of One-Dimensional (1-D) range

profiles, spreading or back-projecting them over the entire 2-D image. A 2-D im-

age is formed by coherently summing the back-projected range profiles generated at

each CPI pulse. These techniques are collectively termed Back-Projection Algorithms

(BPAs) within the SAR community.

Standard derivation of 2-D BPA makes use of the projection-slice theorem to

equate BPA with the more common PFA (i.e., range-Doppler) approach [65, 99].

Chapter V extends this derivation to the 3-D bistatic near-field scenario. Since the

projection-slice theorem requires planar illumination wavefronts [64], the standard

BPA suffers from the same RM problems as the unmodified PFA. More recent work

demonstrates wavefront curvature effects can be accounted for using spherical shells

to control the back-projection process [15,137]. The utility of this correction has only

been demonstrated through simulated data. It has also been suggested that BPA can

be extended to process bistatic SAR data [16].

One unique aspect of BPA is its “real-time” nature [90]. All the previous SAR

imaging methods require data from the entire synthetic aperture before processing.

Back-projection methods, on the other hand, process individual samples along the

aperture in a serial fashion, implying SAR data processing can begin during the data

collection process. For WAM-SAR data, where the total CPI could be more then

several minutes long, producing moderate resolution imagery with data is vital for

minimizing the image production time.

Despite the apparent advantages of BPA, it is often criticized as being signif-

icantly slower then other methods. While 2-D PFA has a computational complex-

ity of O(N2 log2 N), standard 2-D BPA exhibits O(N3) complexity [39]. Despite
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this difference, BPA parallelizes very easily, making it much easier to integrate into

large computing facilities. Also, there have been several recent papers on decreasing

BPA’s computational load using an approach termed “fast” back-projection. In these

methods, computational complexity is reduced from O(N3) to O(N2 log2 N) at the

expense of incorporating an additional interpolation step into the image formation

routine [126,137,140].

2.4.3 Proposed Solution. As indicated above, this research effort builds

on basic BPA to solve the focused image formation problem. The final algorithm,

presented in Sec. 5.5, corrects both for RM (i.e., near-field) effects and arbitrary

flight path/layover effects. Data collected in the Air Force Institute of Technology’s

(AFIT’s) RCS chamber (Sec. 5.6) is used to test this algorithm.

2.5 Implementation Challenges: Aliasing Artifact Reduction

The appearance of aliasing artifacts (i.e., ambiguities) in radar data products

is of significant concern to both the traditional radar and SAR communities. The

basic problem concerns the inability to meet Nyquist sampling requirements when

simultaneously determining the true range, cross range, and Doppler properties for

a given target. These ambiguities manifest themselves as multiple copies of point

target returns called aliasing artifacts. As this section illustrates, these problems are

particularly challenging for WAM-SAR. Failure to address this issue means even if

well focused imagery is produced, extraneous target energy throughout the transmit

beam footprint is spread around the final images.

2.5.1 Problem Introduction. Since the individual pulses in a SAR collec-

tion provide spatial ground samples, the radar’s PRF defines the sampling frequency

along the SAR flight path. As a consequence of the sampling theorem, the sampling
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rate must equal radar echoes’ Doppler bandwidth to avoid Doppler aliasing3. This

bandwidth is usually calculated as the difference between the Doppler shifts from the

front and back edges of the radar’s main beam. Although the clutter returns due to

antenna sidelobes extend over a much broader Doppler frequency range, the returns

are low enough in power that they are typically ignored when selecting the PRF [100].

In the monostatic scenario, the Doppler shift fd imparted to a radar pulse echo

is given by [116]

fd =
2vr

λ
, (2.7)

where vr is the relative velocity magnitude between the radar and the target [116].

For a broadside4 airborne SAR imaging the fixed ground,

vr = vasin(∆θ/2), (2.8)

where va is the aircraft (i.e., SAR platform) velocity magnitude. Equation (2.8)

assumes a 2-D monostatic scenario, ignoring the aircraft depression angle and bistatic

collection geometry. While these effects are explicitly addressed in Chapter VIII they

would needlessly complicate the discussion here.

Equation (2.8) allows calculation of the minimum PRF for avoiding ambiguous

Doppler returns PRFmin as

PRFmin =
4vasin(∆θ/2)

λ
, (2.9)

where λ denotes wavelength and the broadside assumption ensures the Doppler shift

at the front and back beam edges is of equal magnitude and opposite sign. This

PRF requirement can also be expressed as the required distance between CPI pulses

3The actual Nyquist sampling theorem requires sampling at twice the bandwidth. Since SAR
is a coherent process, both the real and imaginary components of the radar echoes are sampled,
effectively doubling the sampling rate.

4A collection is termed “broadside” if the scene center has the same cross range location as the
synthetic aperture center.
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δu. Inverting (2.9) and multiplying by va gives the distance δu moved by the SAR

platform between pulses

δu =
λ

4sin(∆θ/2)
. (2.10)

This relationship is independent of va and indicates sampling requirements are deter-

mined entirely by collection scenario geometry. Spacing along the synthetic aperture

determines the allowable cross range extent of the ground swath. This observation

is consistent with the development in [65], where derivation of the SAR principle,

usually done from the Doppler perspective, is accomplished via geometry. This re-

dundancy in the relationship between Doppler and cross range aliasing is explored

further in Chapter VI where the same PRF requirement is derived from an antenna

theory perspective.

While avoiding Doppler (cross range) aliasing sets a minimum PRF value, avoid-

ing range aliasing sets a maximum PRF value PRFmax. This PRF bound originates

from the requirement that the range swath ∆R must be small enough for the radar

to unambiguously distinguish between echoes from different CPI pulses. The formula

for calculating PRFmax is

PRFmax =
c

2∆R
, (2.11)

where c is the speed of light and the ground swath width ∆R is equivalent to the

unambiguous slant plane range extent.

Equations (2.9) and (2.11) demonstrate one of the fundamental challenges to

wide-angle SAR imaging. If one wishes to simultaneously collect SAR data over a

large ground patch (i.e., with large extents in both the range and cross range di-

mensions), ambiguities result. This fact is illustrated graphically in the contour plot

shown in Fig. 2.6. The contours are labeled with beamwidths in degrees (i.e., ∆θ

since stripmap geometry is assumed) and mark the boundaries of alias-free operation.

To avoid aliasing artifacts, a platform’s (va, ∆R) parameters must place it below the

curve of the appropriate beamwidth ∆θ. This requirement is not challenging for a

traditional narrow-angle radar, but for a wide-angle radar it becomes much more
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Figure 2.6: Contour plot denoting appearance of aliasing artifacts for
various beamwidths ∆θ as functions of platform velocity va and range
swath width ∆R. Contour labels denote beamwidth in degrees. Alias-
ing artifacts appear for (va, ∆R) pairs above the contour line denoting
sensor beamwidth ∆θ.

problematic. Note, the use of a ∆θ = 90◦ beam limits the unambiguous range to

less than 20 km for the Global Hawk’s 200 m/s velocity. This value is more than an

order of magnitude below the ∆R goal of nearly 200 km. The problem is significantly

more challenging if large Doppler shifts from moving targets are incorporated into the

PRFmin requirements5. Addressing ways to break these ambiguities, thereby elimi-

nating aliasing artifacts from the final imagery, is vital to the success of WAM-SAR.

5Ambiguities can also be understood as the ratio of ground swath area to resolution cell area. If
the number of resolution cells within the ground swath exceeds the number of data samples, aliasing
results [53].
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2.5.2 Current Literature Status. Although most SAR systems avoid cross

range aliasing by employing narrow transmit beams, there have been some research

efforts on wide-angle aliasing artifact mitigation. The first class of approaches uses

phased array antennas to place spatial filters on top of aliasing artifacts. While

theoretically possible, this method mandates extremely complex and expensive radar

hardware, making implementation impractical. The second class of techniques centers

on radar waveform modifications. Although, a large literature database exists for

diverse waveform applications in traditional radar, relatively little work has been

done in the SAR arena. Chapters VI-IX solve the aliasing problem using a waveform

diversity approach, achieving excellent performance with minimal implementation

difficulty.

2.5.2.1 Spatial Filtering Approaches. As shown in Fig. 2.6, it is not

possible to select a PRF simultaneously eliminating Doppler and range ambiguities

in the wide-angle case. One class of approaches for dealing with these ambiguities

applies a spatial filter to aliasing artifact locations during the image formation process.

The spatial filter approach uses active phased array antennas along with element-

level digitization. Before discussing ambiguity resolution using phased arrays, a few

comments should be made about using these same arrays for the wide transmit beam

production.

Antenna theory dictates simple linear antennas provide beamwidths propor-

tional to λ/W . This relationship results in another often quoted formula for approx-

imate cross range resolution in stripmap SAR [57]

δy =
W

2
. (2.12)

Equation (2.12) implies generation of a beamwidth wide enough to get a cross range

resolution on the order of a centimeter requires an antenna with a diameter no larger

than about two centimeters. This diameter is clearly impractical since this value is

less than a single wavelength (at X-band frequencies).
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One possible method for wide-angle beam generation makes use of phased array

antennas. Phased array antennas are actually a collection of tens, hundreds, or even

thousands of individual wide-angle antennas (called elements), grouped together into

a single (usually planar) array structure. Each element is connected to a phase shifter

and attenuator controlling both the phase and amplitude of the transmitted waveform

emanated from a given Transmit/Receive (T/R) module. Through proper phase

shifter and attenuator control, the antenna pattern can be electronically steered (i.e.,

focused) in a wide variety of directions without mechanically turning the physical

antenna structure.

Just as the phase shifters and attenuators can focus the beam to a fine point,

they can also defocus the beam to cover a larger beamwidth than indicated by the

antenna dimensions. This technique is referred to as “spoiling” the beam [70]. Ap-

propriate phase and amplitude selection in the individual T/R modules provides this

spoiling. Phase and amplitude weights are determined via the FT or the Woodward-

Levinson method [116].

Producing a wide transmit beam does nothing to solve the ambiguity problem.

However, the advantage of a digitally sampled phased array radar is phase and am-

plitude values used on transmission do not have to be used on reception. Ignoring

mutual coupling effects between individual antenna elements, each T/R module is es-

sentially an independent sample of the scene from a slightly different location. Once

the received echoes are sampled digitally, the processing software introduces virtual

phase shifts and attenuations, forming a receive pattern different than the transmit

pattern. This digital beamforming on the received echoes provides one possible spatial

filtering mechanism for ambiguity resolution [27,37,141,143].

As discussed in the preceding paragraphs, achieving a wide-beam transmit pat-

tern with any realistic phased array antenna requires beam spoiling. This approach

enables focusing of sampled data on receive to form narrow-angle receive beams from

wide-angle transmit beam data. As an example, consider the Global Hawk antenna.
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From Table 2.1, the antenna width is known to be 1.26 meters. The best-case reso-

lution for a phased array radar can be approximated by the resolution of an equiva-

lently sized flat plate. This simplification allows calculation of the focused beamwidth

via (2.2)

∆θ =
λ

2W
. (2.13)

Using a 10 GHz frequency (implying λ = 0.03 m) and W = 1.26 m gives a beamwidth

of approximately 0.68◦. Returning to the radar echo bandwidth calculations in (2.9),

using such a narrow receive beamwidth decreases the PRFmin requirement by a fac-

tor of sin(90/2)/sin(0.68/2) ≈ 120. This focusing dramatically reduces the Doppler

ambiguities caused by selection of a PRF below the PRFmin wide-angle requirement.

Similar results can be obtained using the element vertical spacing, forming multiple

receive beams in elevation, and thereby increasing PRFmax. Since receive beam fo-

cusing is done digitally, the processor can form any number of receive beams simply

by processing the same digitally sampled returns with a different set of phase and

amplitude weights.

Figures 2.7 and 2.8 depict using multiple focused receive beams to resolve

both range and Doppler ambiguities. The spoiled transmit beam illuminates a large

ground patch. Through digital beamforming techniques, each receive beam covers a

much smaller ground patch. The dimensions of the smaller receive patches determine

PRFmin and PRFmax requirements.

In addition to the focused receive beam approach, Currie and Brown [37] theo-

rize a different ambiguity resolution method using multiple defocused receive beams

based on displaced phase center concepts (Fig. 2.9). This approach uses wide beams

during transmit and receive. The receive beams, however, are formed from antennas

displaced from each other in an along track direction (i.e., phased array subsets).

Assuming the distance between the receive beam phase centers is “suitable,” certain

Doppler ambiguities can be resolved without raising the PRF. Hansen [58] proposes

a similar approach for improving the Signal-to-Noise Ratio (SNR) of a SAR sensor.

43



Antenna

Ground Swath Covered by
One Transmit Beam

Figure 2.7: Spoiled phased array transmit beam. The
beam has a large footprint causing many range and
Doppler ambiguities.

Antenna

Ground Swath Covered by
Many Receive Beams

Figure 2.8: Multiple focused receive beams formed
from the phased-array elements. Smaller receive beam
dimensions determine the PRF requirement for alias-free
operation.
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Antenna

Ground Swath Covered by
Multiple Spoiled Receive

Beams

Figure 2.9: Use of multiple spoiled receive beams to
defeat ambiguities. The displaced phase center effect al-
low ambiguity resolution with multiple wide beams.

Goodman, et al., address a similar problem when developing processing meth-

ods for sparse spaceborne receiver arrays [53]. Their work reformulates the ambiguity

problem via correlation matrices and applies Maximum-Likelihood (ML) and Mini-

mum Mean-Square Error (MMSE) methods, minimizing SAR ambiguities.

In addition to the non-adaptive digital beam forming techniques presented

above, adaptive methods also provide an effective tool for ambiguity elimination. Grif-

fiths and Mancini [56] propose a method involving an adaptive elevation-plane array

to place nulls explicitly at range ambiguous locations. Callaghan and Longstaff [27]

examine the use of STAP techniques to control antenna null placement.

A final technique meriting mention was developed by Moreira [96]. Although

not explicitly related to spatial filter application, it uses the “ideal” filter concept to

mitigate individual cross range ambiguities from SAR data through a deconvolution

process. Unfortunately, the phase and amplitude histories of aliasing artifacts must
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be precisely known. This limits effectiveness, especially in the face of large RM

effects [96].

Phased array-based spatial filtering approaches to ambiguity resolution do not

come without a price. Phased arrays are very complex and expensive. Furthermore,

the requirement for digitized radar echoes means the amount of data scales linearly

with the number of independent antenna elements Na. Since this research effort as-

sumes all image formation in ground-based facilities, phased array usage also increases

the required communication bandwidth by a factor of Na.

2.5.2.2 Waveform Diversity Approaches. The previous section ap-

proached solving the ambiguity problem using a collection of digital beam forming

methods. This section reviews an approach based on modifying the transmitted wave-

form itself, not simply the phasing of the echoes received by individual antenna ele-

ments. Since the radar waveform itself is varied, this class of techniques is grouped

under the umbrella of waveform diversity.

One of the oldest methods for resolving radar waveform ambiguities involves

using multiple PRFs [121]. Transmitting two waveforms at different PRF values

changes the ambiguity locations. If the PRF values are relatively prime, they do not

share any common ambiguities and may be used together to recover ambiguity free

data over larger ground swaths than is possible with either PRF alone. Unfortunately,

using multiple PRFs causes irregular sample spacing along the synthetic aperture.

Irregular spacing complicates the image formation process since traditional Fourier

methods require uniform sampling. This approach also suffers from reduced SNR

since the equivalent number of CPI pulses must be divided among two multiple image

formation routines.

Waveform pulse coding provides another important ambiguity resolution method.

These methods mark successive waveforms so they can be distinguished from one an-

other when the echoes are received. There are a wide variety of pulse coding tech-

niques present in the literature. One of the simplest transmits successive LFM chirps
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in different “directions.” The first chirp begins at the minimum frequency and lin-

early increases to the maximum frequency. The next chirp begins at the maximum

frequency and linearly decreases until reaching the minimum frequency [27]. Assum-

ing the two waveforms can be perfectly distinguished on receive, this process doubles

the unambiguous range and maximum PRF6. More complex methods include super-

imposing binary codes on top of pre-existing waveforms. One popular approach uses

Pseudo-Random Noise (PRN) codes. These methods employ shift registers, imparting

a binary sequence of phase shifts on the waveform [116].

Regardless of the code type applied, effectiveness is linked to the waveform re-

sponse to a matched filter. The user desires a coded waveform set yielding a maximum

SNR when applying a matched filter constructed using this code. If the filter is “mis-

matched” using the incorrect code, a minimum SNR should result. Orthogonal codes

are termed ideal since application of the incorrect code perfectly cancels the incoming

signal energy.

A more advanced coding technique for ambiguity reduction is discussed in [6].

In this method, nonlinear suppression techniques add additional separation between

the SNR of matched and mismatched responses. This approach modifies the received

data, zeroing the pulse energy after mismatched filtering and results in waveform

performance closely approximating the ideal orthogonal relationship.

Waveform diversity can also be achieved through frequency diversity [27]. This

approach resolves range ambiguities but inserts Doppler additional ambiguities. Fre-

quency diversity might also be of value in dealing with the excessive sidelobe levels

in wide-angle imagery.

While there is an extensive literature database on waveform diversity techniques,

there is relatively little information about applying these techniques to SAR (some

examples are [77,138] but they do not relate explicitly to ambiguity resolution). This

6Section 9.4 illustrates these waveforms are not perfectly distinguishable, limiting their usefulness
for the anti-aliasing problem.
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lack of research may stem from the relative lack of ambiguity problems in traditional

narrow-angle SAR sensors, and indicates there is significant room for additional re-

search.

Before closing this section, it should be mentioned that the SAR sensor’s wave-

form type may effect the entire imaging process. While some image processing meth-

ods (e.g., chirp scaling) are explicitly linked to waveform type, others (e.g., back-

projection) begin processing with matched filtered range profiles, making them less

sensitive to waveform parameters. For this reason, the use of diverse waveforms must

coincide with a clear understanding of the image formation process.

2.5.3 Proposed Solution. Chapter VI develops a new diverse waveform anti-

aliasing technique. By combining radar echoes from randomized Stepped-Frequency

(SF) waveforms, the technique forms a series of Doppler filter nulls coinciding with

aliasing artifact Doppler values. Un-aliased scene components are unaffected by this

approach. Unlike the phased-array methods discussed in Sec. 2.5.2.1, this SF wave-

form method does not require advanced hardware or specialized processing. Chap-

ters VII and VIII demonstrates the technique using point scatterer simulations, while

Chapter IX provides validation using high fidelity third party simulation software and

measured RCS chamber data.

2.6 Summary

This chapter introduced the WAM-SAR radar architecture. WAM-SAR promises

to solve some of the most vexing real-time radar surveillance problems faced on the

modern battlefield, providing high resolution SAR imagery over vast ground swaths.

The use of a multistatic data collection geometry helps prevent shadowing and in-

creases platform survivability.

Unfortunately, as enticing as WAM-SAR’s benefits sound, the wide-angle data

collection geometry introduces significant problems, precluding SAR image formation

using traditional methods. The first of these problems involves focusing wide-angle
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data in the presence of RM (i.e., radiative near-field effects) and warped ground

planes. While the literature contains several techniques which address certain aspects

of these data focusing problems, none of these solutions fully corrects for these issues

in the general WAM-SAR scenario. The SAR imaging algorithm presented in Chap-

ter V provides complete data focusing in a 3-D monostaic/bistatic radiative near-field

scenario. This algorithm is validated using ISAR data from AFIT’s RCS chamber.

The second problem precluding WAM-SAR is the presence of aliasing artifacts

in the resulting imagery. The large Doppler spread inherent in wide-angle radar

ground echoes mandates an impractically large PRF. Failing to meet this require-

ment leading to undersampling along the synthetic aperture resulting in cross range

(i.e., Doppler) aliasing. In theory, a fully digitized active phased array radar could

solve this problem, but the expense and complexity of this approach precludes im-

plementation. This research effort develops a new anti-aliasing approach based on

waveform diversity principles. When combined with matched filter processing, the

randomized SF radar waveforms place Doppler filter nulls at aliasing artifact locations,

effectively removing the aliased energy from the imagery. The technique’s theory is

presented in Chapter VI. It is demonstrated using both simulated and measured data

in Chapters VII-IX. In addition to only requiring a two channel antenna, the use

of randomized CW SF waveforms allows simultaneous multi-platform operation and

reduces platform vulnerability.
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III. Synthetic Aperture Radar Overview

Chapter II provided a detailed introduction to the Wide-Angle Multistatic Syn-

thetic Aperture Radar (WAM-SAR) concept, illustrating both benefits and

challenges. Before discussing the dissertation’s core research efforts and results, a

more detailed overview of the Synthetic Aperture Radar (SAR) field is needed. This

chapter provides such an overview, reviewing SAR history and applications as well as

introducing basic processing approaches and implementation issues.

3.1 Brief SAR History

In 1951, Carl Wiley discovered that two fixed targets with an angular separation

could be differentiated by a moving radar platform based on the difference between

the targets’ Doppler shifts. He called this technique Doppler beam sharpening, but

today it is recognized as a specialized form of SAR [133,134]. While Wiley formalized

his Doppler beam sharpening technique, a group at the University of Illinois noticed

the same Doppler effect in frequency spectra from a series of terrain samples. In 1953,

they built a specialized X-band radar and produced a basic Two-Dimensional (2-D)

radar image [8, 74,114].

Since the 1950s, SAR processing techniques have matured dramatically. SAR

imaging was first extended to three dimensions by Lee Graham in 1974 using inter-

ferometric processing [55]. One of the most significant advancements came with the

advent of high-speed digital computers. Computers enabled the replacement of op-

tical processors (used in most pre-1980 SAR imagery) with digital processors. John

Kirk first demonstrated this advance in 1975 [71].

In 1980, Jack Walker corrected significant focusing errors in SAR imagery by rec-

ognizing the polar nature of SAR data collection. This discovery also helped solidify

the foundations of Inverse Synthetic Aperture Radar (ISAR) [128]. ISAR uses target

motion (as opposed to the radar motion) to form a high resolution multi-dimensional

image. Walker’s work also forms the basis for the Polar Reformatting Algorithm

(PFA) still used in many modern SAR systems. Another significant discovery was
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made by David Munson in 1983, when he showed tomographic techniques from the

medical imaging community could also be used to form SAR images [99]. This dis-

covery led to the development of the Back-Projection Algorithm (BPA). Chapter V

demonstrates a specialized BPA approach, developed for a general Three-Dimensional

(3-D) near-field bistatic collection geometry.

3.2 Basic SAR Principle

The first SAR algorithms were derived from a Doppler shift paradigm [114,133].

These algorithms exploit the fact that radar targets at the same range but differ-

ent angular locations have different Doppler shifts as observed by a moving radar

platform. More recently, SAR imaging has been reexamined from the antenna the-

ory perspective [121]. This approach makes uses the fact that antenna main beam

width is inversely proportional to antenna size [68]. Thus, achieving a very narrow

beamwidth requires a very large antenna. In many applications, the desired antenna

beamwidth, which correlates directly to image angular resolution, demands an im-

practically large antenna. SAR allows the radar designer to achieve very fine angular

resolution using a relatively small antenna by coherently combining radar echoes re-

ceived by a small antenna located at a collection of different spatial locations. These

echoes are collected over a period of time known as the Coherent Processing Interval

(CPI), during which the transmitted waveform phase cannot drift significantly. The

spatial extent of these locations determines the “synthetic” antenna length and thus

the angular (i.e. cross range) resolution1. Combining the SAR principle with high

range resolution techniques (e.g., pulse compression [41]) produces high resolution,

multi-dimensional radar imagery.

1The synthetic antenna beamwidth is half the beamwidth of an equal-length real antenna, and
provides better angular resolution by a factor of two [121]. This effect results from the two-way
propagation of the radar echoes forming the synthetic aperture.
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3.3 Role of SAR

Since the initial discovery of the basic SAR principle in the 1950s, the num-

ber and importance of SAR applications has grown considerably. While in no way

exhaustive, this section highlights major applications of SAR systems with relevant

citations.

The most well known applications for SAR systems are the production of terrain

maps. The ability to map large ground patches, even while in darkness and through

cloud cover, has made SAR imagery vitally important for many military and non-

military applications. SAR maps can be used for everything from classification of

terrain type [17] to real-time surveillance and reconnaissance of a battlefield [46,119].

With the advent of spaceborne SAR systems, the remote sensing community gained

a powerful tool for creating maps to monitor environmental changes in the Earth’s

surface [124]. The future plans of the National Aeronautics and Space Administration

(NASA) include launching a SAR system called LightSAR, capable of producing near-

global interferometric maps of the Earth for monitoring surface changes [61]. Yet

satellite SAR systems are not limited to remote sensing of geophysical characteristics

of the Earth. Considerable effort has also been put into the use of SAR for mapping

other planets. One of the best examples of this application was the Magellan mission

to the planet Venus [68].

Extensive research has begun into SAR systems capable of penetrating either

the ground or dense foliage canopies. One promising application of ground pene-

trating SAR is the ability to detect land mines [7]. FOliage PENetration (FOPEN)

applications also hold promise, allowing SAR systems to view manmade objects (such

as tanks) beneath vegetation [138].

A very active SAR research area is Automatic Target Recognition (ATR). These

techniques allow computer algorithms to identify targets of interest with minimal

human intervention. This ability is useful because the volume of data produced by a

SAR system can overwhelm human operators. ATR methods are based on a variety
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of techniques. One of the most popular involves modeling targets as collections of

discrete point scatterers and fitting these models to the data [20,31,105]. Other ATR

approaches are based on everything from Hidden Markov models to template matching

and neural networks. Another ATR-related application uses ship wake imagery for

ship identification [113].

Even the archeology field has benefitted from SAR. In 1999, an ancient city in

the Honduran rain forest was discovered using SAR imagery [139]. The radar did not

locate the ruins directly, but observed variations in the jungle canopy above the ruins,

localizing the ancient city.

Another important military SAR application deals with the challenge of inte-

grating SAR and Moving Target Indication (MTI) systems. Combining these missions

into a single platform (or even a single waveform) holds great promise for improving

effectiveness on the battlefield. Several recent papers address the issues associated

with moving targets as observed by SAR systems [33,66,97].

In SAR, a moving radar samples a fixed target region. The same principle can

be applied by fixed radars to image moving (especially rotating) targets is a technique

known as ISAR. In addition to aiding in target recognition schemes, ISAR methods

can produce radar images using Radar Cross Section (RCS) chamber data. These

images help engineers identify and perhaps control the prominent scatters on a given

object, lowering the overall RCS [73,93].

A final application deals with bistatic radar concepts. Most SAR systems op-

erate in a monostatic mode, both transmitting and receiving from a single radar

antenna. Bistatic systems, on the other hand, transmit from one antenna and receive

echoes from a different antenna. These antennas can be located on entirely different

radar platforms and separated by substantial distances. This configuration could add

substantial new capabilities to radar and SAR applications, such as the ability to

operate in a passive mode, decreasing the odds of radar platform detection. Bistatic
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SAR systems could be built which do not use explicit radar waveforms, but rather

radio and television signals already present in the environment [62,106].

3.4 Stripmap SAR Geometry

SAR systems generally operate in one of two modes: stripmap and spotlight.

Stripmap SAR systems produce relatively low resolution images over large regions.

Spotlight SAR systems produce high resolution imagery over small regions. This

section outlines the basic geometry behind stripmap mode SAR. Section 3.5 details

spotlight SAR.

As the name suggests, stripmap SAR systems produce images of large ground

strips. The width of these strips is defined by the radar’s range swath while the length

is governed by the aircraft’s flight path extent [117]. The literature covers stripmap

SAR systems extensively [8, 23, 100]. Typical stripmap platforms fly a linear path

parallel to the ground while the radar beam is pointed at some fixed angle relative to

the radar flight path. Many systems operate with the radar beam pointed normal to

this flight path, resulting in a “broadside” collection. If the beam is not normal to

the flight path, the collection geometry is termed “squinted.”

Figure 3.1 shows a broadside stripmap SAR geometry. The term “ground swath”

refers to the intersection between the ground and the radar’s mainbeam. It defines

one dimension (the range extent ∆R) of the maximum image size. The vertical axis

(parallel to the radar’s flight path) is known as the cross range dimension. The

horizontal axis is called the range or slant range dimension depending on the author

or situation [36,100,117]. Ground range is the distance between a target and a point

in the ground plane directly beneath the radar. Slant range refers to the true distance

between the radar and the target. Since the radar is usually aboard an aircraft or

other elevated platform, the slant range is somewhat larger than the ground range. For

2-D collection scenarios, when collection platform altitude is defined as zero, ground

range is equivalent to slant range. Radar data is always collected and often processed

in the slant range plane (defined by the aircraft flight path and a point on the ground
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Figure 3.1: Broadside stripmap SAR geometry.

marking the imaged scene center). The resulting imagery is usually projected into the

ground plane to create images as though the viewer is located directly overhead [65].

Figure 3.2 illustrates the different types of range.

As discussed in Section 3.9, the span of azimuth angles (denoted ∆θ) observed by

the SAR platform determines the cross range resolution. The larger the angular span,

the better the resolution achieved. In stripmap mode, ∆θ is equal to the beamwidth,

since the beam is fixed relative to the radar platform.

Stripmap systems also usually share a common processing method. As indi-

vidual radar echoes are processed, they are referenced to a fixed range, usually the
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range swath’s midpoint. This referencing procedure, called “motion compensation

to a line,” ensures the demodulated echoes from a given point scatterer exhibit a

frequency shift depending on its instantaneous cross range location. Often referred

to as an azimuth chirp, this behavior can have significant impact on the sampling

requirements and processing methods used by SAR imaging algorithms [36,100].

3.5 Spotlight SAR Geometry

Spotlight SAR systems are a more recent SAR operating mode, and are also

addressed extensively in the literature [8,28,99]. In stripmap SAR, the radar platform

motion moves the beam over different ground sections. Conversely, in spotlight SAR,

radar platform motion and/or beam steering continually illuminates the same ground

patch. This approach necessarily limits the scene (i.e., image) size, but also results

in higher resolution imagery. This procedure makes ∆θ larger than the beamwidth,

leading to high resolution.

Figure 3.3 shows a typical spotlight collection geometry. Note, the flight path

is identical to the stripmap case. This time, however, the beam illuminates the same
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Figure 3.3: Broadside spotlight SAR geometry.

ground patch throughout the collection. Since the ground patch center’s cross range

location is the same as the middle of the radar platform flight path (i.e., middle of

the synthetic aperture), this collection is still referred to as broadside. Shifting the

ground swath’s cross range location results in a squinted collection.

Another common spotlight SAR operating mode requires flying a circular path

about the scene. In this mode, beam steering is unnecessary as the circular flight

path keeps the beam pointed at the same ground patch throughout the flight. Again,

the beam must illuminate the same ground patch throughout the collection.

spotlight mode processing is also different than stripmap processing. Instead

of being referenced to a fixed range during the demodulation process, spotlight SAR
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signals are referenced to the ground swath center. This absolute referencing is called

“motion compensation to a point” and effectively removes the azimuth chirp found

in demodulated stripmap data. In fact it is often possible to use spotlight processing

methods on stripmap data, resulting in some ambiguity in determining which mode

a SAR system is using [100]. In this research effort, data is simulated/collected in

both stripmap and spotlight geometries, but the processing always uses spotlight’s

“motion compensation to a point” approach. This decision enables the construction

of SAR imaging algorithms insensitive to the data collection mode. WAM-SAR itself

uses stripmap data collection and spotlight processing.

3.6 Matched Filtering

Whether operating in a stripmap or spotlight mode, most SAR systems trans-

mit a series of pulses into the environment at regular time intervals spanning the CPI.

The pulse echoes during the CPI are collected and processed into SAR images. As-

suming the SAR platform velocity is small compared to the wave propagation velocity

c, SAR echoes may be processed using the start-stop assumption. This approach as-

sumes the SAR platform is fixed during transmission/reception of each CPI pulse.

Platform motion is assumed to occur instantaneously between pulses. The start-stop

assumption is used extensively in the SAR community and is valid for most airborne

data collection scenarios [25,65,100,117].

Invoking the start-stop assumption allows each CPI pulse to be processed in-

dividually. This section introduces one of the most popular processing methods,

matched filtering. It illustrates how waveform pulse echoes are used to form One-

Dimensional (1-D) range profiles. Later sections describe how SAR imaging algo-

rithms combine range profiles from the entire CPI to produce multi-dimensional SAR

imagery.

At each CPI point, the radar transmits a waveform wTX(t). As a consequence

of the constant waveform propagation velocity, the relationship between range r and
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time delay t can be written as

r =
ct

2
, (3.1)

where c is the speed of light. Using this linear relationship, the receive radar echo

wRX(r) may be written as

wRX(r) = wTX(r) ∗ pθ(r), (3.2)

where ∗ denotes convolution. Doppler shift may be ignored for the moment due to

the start-stop approximation. The function pθ(r) is the scene’s true range profile as

observed from the radar’s instantaneous location. Assuming the scene is contained in

the radar’s far-field (where plane wave propagation is assumed), the scene’s Radon

transform determines its range profile [60]

pθ(r) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy, (3.3)

where δ(·) is the delta function. The function f(x, y) is the scene’s 2-D complex

reflectivity function. Assuming the scene center is defined at (0, 0), the range r and

angle θ are defined by the instantaneous SAR platform location (xp, yp) via

r =
√

x2
p + y2

p, (3.4)

θ = tan−1
(y

x

)

. (3.5)

Note the tan−1(·) assumes both x and y are positive. When this is not the case, care

must to ensure θ is placed in the correct quadrant.

Generating an accurate estimate f̂(x, y) of f(x, y) is the SAR system’s primary

goal. Unfortunately, as dictated by (3.3), the scene is projected onto a line defined by

the instantaneous platform location and scene center. The range profile pθ(r) defines

the integrated contribution from scatterers at a given range r from the radar’s current
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location. At each CPI point, the platform’s new location (xp, yp) defines a new θ value,

resulting in a new true range profile pθ(r).

The returning radar echo wRX(r) is “matched filtered,” generating the range

profile estimate p̂θ(r)

p̂θ(r) = wRX(r) ∗ hMF(r) = [wTX(r) ∗ pθ(r)] ∗ hMF(r), (3.6)

where hMF(r) is the matched filter’s impulse response. By definition, the matched

filter maximizes the ratio of peak signal power to mean noise power (i.e., Signal to

Noise Ratio (SNR)) [63]. Assuming the radar echoes are corrupted by white Gaussian

noise (e.g., thermal noise), hMF(r) is defined by [117]

hMF(r) = w∗
TX(−r), (3.7)

where the superscripted ∗ denotes conjugation. Equation (3.7) allows (3.6) to be

rewritten as

p̂θ(r) = [wTX(r) ∗ pθ(r)] ∗ w∗
TX(−r). (3.8)

Using the convolution and conjugation Fourier Transform (FT) properties (Appendix A),

(3.8) becomes

p̂θ(r) = F−1
[

|WTX(kr)|2Pθ(kr)
]

, (3.9)

where

kr =
4π

λ
, (3.10)

is the radial spatial frequency (i.e., wave number) defined by λ, the transmitted

wavelength2 and F−1 denotes the Inverse Fourier Transform (IFT). Taking the range

2Equation (3.10) contains an additional factor of two compared to the traditional wave number
definition kr= 2π/λ. The functions WTX(kr) and Pθ(kr) are the Fourier transforms of wTX(r) and
pθ(r), respectively. This additional factor of two results from the two-way propagation inherent in
radar applications. Unless stated otherwise, this factor of two is always assumed.
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profile estimate’s FT, yields

P̂θ(kr) = F [p̂θ(kr)] = |WTX(kr)|2Pθ(kr). (3.11)

Equation (3.11) shows Fourier transforming the matched filter output p̂θ(r) results

in a windowed estimate P̂θ(kr) of the scene’s spatial frequency data Pθ(kr). The

windowing function |WTX(kr)|2 determines the spatial frequency values available to

the SAR sensor.

An “ideal” bandlimited waveform provides uniform frequency coverage over a

bandwidth B. Analytically, this frequency coverage is

|WTX(kr)|2 =







1, min(kr) ≤ kr ≤ max(kr)

0, otherwise,
(3.12)

where min(kr) is the minimum kr value (corresponding to the minimum transmit

frequency) and max(kr) is the maximum kr value (corresponding to the maximum

transmit frequency). In this case, the estimate P̂θ(kr) is simply a subset of Pθ(kr).

The specific spatial frequency samples acquired are determined by the waveform band-

width B. In the limit of min(kr) → 0 and max(kr) → ∞ (i.e., infinite waveform band-

width), P̂θ(kr) = Pθ(kr) and p̂θ(r) = pθ(r), yielding a perfect range profile estimates

(assuming noise-free measurements).

Prior to closing this section, it should be noted that matched filtering is not

the only SAR data processing method. Many older SAR systems use “deramp pro-

cessing” where Linear Frequency Modulation (LFM) waveform echoes are mixed with

the original transmit waveform, producing 2-D spatial frequency samples without the

need for an explicit FT operation [65]. Deramp processing was particularly attractive

to older systems because it can be easily implemented in analog radar hardware. Un-

fortunately, deramp processing mandates the use of LFM waveforms, and is therefore

inappropriate for the waveform diversity-based anti-aliasing technique introduced in

Chapter VI. Also, deramp processing is not appropriate for wide-angle focused image
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formation since it inherently assumes plane wave illumination [65]. For these reasons,

in addition to their optimal SNR matched filter properties, matched filters process all

WAM-SAR data.

3.7 Point Scatterer Model for Scene Reflectivity

As stated in the previous section, SAR/ISAR imaging produces an estimate

f̂(x, y) of the scene’s spatial reflectivity function f(x, y). This “image” is different

from, but related to, an optical image or photograph of the same region. An in-depth

analysis of these differences is beyond the scope of this section, but these differences

arise from several important effects. First, the SAR system’s wavelengths are much

longer than those of light. Second, SAR is a coherent imaging system (magnitude

and phase) while optical images use non-coherent collections (magnitude only). Also,

radar systems directly measure range whereas optical systems do not.

The point scatterer model is commonly used throughout the SAR community

as a basis for imaging algorithm development [8, 65, 117]. It consists of modeling the

scene’s reflectivity function f(x, y) as a superposition of ideal point scatterers. The

mth point scatterer sm(x, y) is defined as

sm(x, y) = Amδ(x − xm, y − ym), (3.13)

where Am is the complex scatterer amplitude, δ(·, ·) is the 2-D delta function, and the

scatterer location is defined by the coordinates (xm, ym). Note the amplitude Am is a

complex constant. More robust point scatterer models allow Am to vary as a function

of look angle and illumination frequency [119].

The point scatterer model makes several inherent scene assumptions. Perhaps

most significantly, it doesn’t allow for the interaction among individual point scat-

terers. This assumption means real targets, exhibiting interactions due to cavities,

multipath effects, etc., will not be correctly modeled. None-the-less, the assumption’s

limitations are not an issue for SAR image formation. Since this model is used to
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develop imaging algorithms, the point scatterer model only focuses energy from radar

echoes as though it was reflected from a point scatterer. The echoes from a more

complicated target, such as a cavity, simply appear as a point scatterer further away

from the radar. One approach for dealing with this effect is including a much more

complex model in the imaging algorithm, but the complexity and computational ef-

fort involved is unlikely to yield beneficial results. Instead, one can simply treat the

excess energy from a cavity echo as an additional feature in a point scatterer model-

based image. Although not present in an optical image, this additional feature can

be exploited by imagery analysts, enabling better scene/target characterization [111].

3.8 The Spatial Frequency Paradigm

Section 3.6 illustrated how each Fourier transformed matched filtered radar echo

F [f̂θ(r)] generates a series of spatial frequency samples F̂θ(kr) covering all available

orientation angles θ. Due to the Fourier transform’s rotational property (see Ap-

pendix A), the orientation angle θ in the spatial (image) domain (x, y) is the same as

the orientation angle in the transform domain (kx, ky). This fact allows the user to

map spatial frequency samples from individual CPI pulse echoes onto the 2-D spatial

frequency domain using a simple polar-to-cartesian conversion

kx = kr cos θ (3.14)

and

ky = kr sin θ, (3.15)

where kx is the spatial frequency coordinate in the kx-direction and ky is the spatial

frequency coordinate in the ky-direction. These conversions allow examination of the

scene’s 2-D complex reflectivity function f(x, y) in the 2-D spatial frequency domain

F (kx, ky). This paradigm for understanding SAR data collection and processing forms

the basis for many modern SAR image generation algorithms.
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Using the point scatterer assumption from Sec. 3.7, a scene’s 2-D complex re-

flectivity function f(x, y) can be represented as

f(x, y) =
M−1
∑

m=0

sm(xm, ym), (3.16)

where M is the number of scatterers. Figure 3.4(a) illustrates such a scene containing

M = 4 unit amplitude point scatterers located at arbitrary locations. The equivalent

spatial frequency domain data F (kx, ky) is found by taking the scene’s 2-D FT to

obtain

F (kx, ky) = F [f(x, y)] . (3.17)

Figure 3.4(b) shows |F (kx, ky)| for the scene in Fig. 3.4(a).

Using the linearity of the Fourier transform, (3.17) can be rewritten as

F (kx, ky) =
M−1
∑

m=0

Sm(kx, ky), (3.18)

where

Sm(kx, ky) = F [sm(x, y)] = Amexp[−j(kxxm + kyym)]. (3.19)

As shown in Sec. 3.6, the SAR data collection process obtains a subset of the scene’s

spatial frequency data F (kx, ky). For typical narrow-angle SAR sensors, the available

spatial frequency data is roughly rectangular in shape. Figure 3.4(c) displays this

available data and represents the radar’s estimate F̂ (kx, ky) of F (kx, ky).

When the available data is subjected to a 2-D IFT, the result is Figure 3.4(d)

containing the estimate f̂(x, y) of the true reflectivity function f(x, y). Although the

scene estimate has placed all 4 scatterers at their correct locations, the limited amount

of available data has degraded the resolution of f̂(x, y) and introduced a cross-shaped

sidelobe structure around each scatterer.

Figure 3.5 illustrates a different approach to the spatial frequency paradigm.

Inherent data collection process limitations mean F̂ (kx, ky) is acquired by multiplying
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(a) True reflectivity function. (b) 2-D FT of true reflectivity function.

(c) Available data. (d) Reflectivity function estimate.

Figure 3.4: Conceptual depiction of SAR imaging process using spatial frequency
paradigm.
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(a) Data support region in 2-D spatial fre-
quency domain.

(b) Image (spatial) domain IPR defined by the
2-D FT of the data support region.

Figure 3.5: Relationship between data support region and SAR IPR function.

F (kx, ky) by a masking function defining the specific (kx, ky) values available to the

SAR system. Figure 3.5(a) shows such a mask. Since the mask defines the available

data, it is also referred to as a data support region [65].

Taking the mask’s 2-D IFT results in the ImPulse Response (IPR) function

shown in Fig. 3.5(b). This function represents the scene estimate f̂(x, y) resulting

from a scene consisting of a single, unit-amplitude point scatterer appearing at the

scene center. Using the FT convolution property, the estimate f̂(x, y) of a more

complicated scene can be obtained by performing a 2-D convolution of the IPR with

the true scene f(x, y).

3.9 Image Resolution

Perhaps the most fundamental qualifier for establishing SAR/ISAR image qual-

ity is resolution. Conceptually, resolution refers to the minimum spacing between

objects for both objects to be distinguished (i.e., resolved). Image resolution is nor-

mally divided into range and cross range components. This distinct terminology is

used because in traditional narrow-angle SAR systems range and cross range resolu-
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tion are essentially independent. In wide-angle systems, these factors are not inde-

pendent. This section develops methodology for calculating achievable narrow-angle

SAR/ISAR image resolution based on data coverage extent in the spatial frequency

plane. Chapter V extends these results to the wide-angle bistatic 3-D case.

From basic Fourier analysis, it is well known that resolution in one domain is

determined by the extent in the other domain. For example, the FT of an infinite

duration single-frequency sinusoid, is a delta function δ(·). As the sinusoid’s tem-

poral support is reduced, the delta function expands into a sinc(x) , sin(πx)/πx

function. The shorter the signal, the wider the sinc(·) function’s main lobe. Extend-

ing this analogy to the spatial frequency domain, the data support region extent in

the kx-direction (∆kx) determines the final image resolution in the x-direction (δx).

Similarly, ∆ky determines δy. Assuming the scene is normal to the platform flight

path, the x-direction corresponds to range, while the y-direction corresponds to cross

range.

Calculating the predicted resolution only requires a little geometry. As shown

in [65], Fourier analysis provides the range and cross range resolutions as

δx =
2π

∆kx

(3.20)

and

δy =
2π

∆ky

, (3.21)

where ∆kx and ∆ky are the extents of available spatial frequency data in the kx and ky-

directions, respectively. To this point, the term resolution has been used rather loosely,

without specifying whether it refers to null-to-null resolution, -3.0 dB resolution, etc.

To be more precise, (3.20) and (3.21) should be multiplied by a broadening factor bw

determined by the amplitude window used to weight the available data.

Under uniform weighting, multiplying the resolution equations by bw≈ 0.88

gives -3.0 dB resolution. Under the more typical 40.0 dB Taylor weighting, bw ≈ 1.24
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gives the -3.0 dB resolution [65]. To avoid introducing unnecessary complexity, unless

otherwise specified, this document uses bw = 1 (allowing it to be ignored). Choosing

bw = 1 and using uniform weighting results in a -4.0 dB resolution criterion.

Equations (3.20) and (3.21) demonstrate determining image resolution becomes

a question of calculating the data support region dimensions in the 2-D spatial fre-

quency plane. Given the SAR collection parameters, this calculation is not difficult.

As discussed in Sec. 3.6, each CPI pulse samples a radial “spoke” of the 2-D spatial

frequency plane F (kx, ky).

Figure 3.6 shows the data support of a hypothetical SAR data collection. The

waveform bandwidth determines the annulus width. The dots within the circles cor-

respond to radar waveform samples. Each spoke corresponds to data from a single

CPI pulse. The sampled region’s angular extent ∆θ is determined by the set of look

angles, from the radar, to the scene center, throughout the collection. A close-up of

Fig. 3.6 is shown in Fig. 3.7. The dimensions of the rectangular box approximately

bounding the data (∆kx × ∆ky) determine the best-case image resolution.

The hypothetical collection shown in Figs. 3.6 and 3.7 illustrates a typical

narrow-angle SAR collection. In this case, the bounding box width is determined

by the signal bandwidth and the height is determined by the collection’s angular ex-

tent and mean wavelength. Under these conditions, the resolution formulas become

δx =
c

2B
(3.22)

and

δy =
λc

2∆θ
, (3.23)

where B is the waveform bandwidth and λc is the center wavelength. These formulas

are equivalent to typical SAR resolution formulas found in many SAR texts [36, 65,

130]. Note, these equations were derived using small angle approximations for ∆θ.
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Figure 3.6: 2-D spatial frequency domain SAR data
collection representation. Each point represents a single
digital sample. Waveform bandwidth B determines the
annulus width. The look angles define the angular extent
∆θ.

69



300 350 400 450 500 550
−150

−100

−50

0

50

100

150

k
x
 (rad/m)

k y (
ra

d/
m

)

∆ky

∆kx

Figure 3.7: Close-up of Fig. 3.6. The rectangular
bounding box dimensions (∆kx × ∆ky) determine the
best-case image resolution.
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Figure 3.8 shows the data support regions (gray arcs) for two ∆θ = 90◦ collec-

tions. Subfigure (a) illustrates a B = 6 GHz collection, while subfigure (b) uses the

Global Hawk bandwidth of B = 600 MHz. The rectangular box circumscribing the

data arcs serves as a quantitative indicator of the resulting image resolution. While

the width along the kx-axis is determined primarily by waveform bandwidth in the

narrow-angle case (Figs. 3.6 and 3.7), both B and ∆θ contribute in the wide-angle

case illustrated here. Taking the 2-D FT of these data support regions results in the

IPR functions presented in Fig. 2.3. Resolution values are in Tab. 2.2.

3.10 Sampling Requirements

The previous section calculated expected SAR image resolution using the prin-

ciple that frequency domain extent determines image domain resolution. The same

principle can be used to determine sampling requirements by reversing the domains.

Sampling density in the spatial frequency domain determines the maximum alias-free

image domain size.

Using (3.20) and (3.21) and reversing the domains gives the following relations

δkx =
2π

∆x
, (3.24)

and

δky =
2π

∆y
, (3.25)

where δkx and δky represent the maximum allowable sample spacing in the spatial

frequency domain. The variables ∆x and ∆y define the maximum allowable image

extent in range and cross range directions (i.e., the maximum ground swath dimen-

sions).

The maximum sample spacing along the kx-axis occurs at θ = 0, when the

target is broadside to the radar. In this case, the spacing is determined by dividing

the total waveform bandwidth B by the number of samples N across the bandwidth.
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Figure 3.8: Data support regions (gray arcs) for two wide-angle SAR data
collections (∆θ = 90◦, fc = 10 GHz). Subfigure (a) has B = 6 GHz with
60% relative bandwidth. Subfigure (b) has B = 600 MHz with 6% relative
bandwidth. The circumscribed rectangle area is inversely proportional to the
resulting image resolution.
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Thus, for a waveform of bandwidth B,

δkx =
4π

cN
B. (3.26)

This equation implies the total allowable range extent ∆x for a given waveform is

simply

∆x = N
c

2B
, (3.27)

where N is the number of frequency samples. Equation 3.27 is simply the number

of frequency samples times the approximate -4.0 dB range resolution δx from (3.20).

This development assumes only discrete frequency samples are available. While valid

for some data collection scenarios, a more common approach in real SAR systems

is transmitting a waveform with its energy spread uniformly across its bandwidth

(e.g., LFM waveforms). In this case, the number of frequency samples N is essentially

infinite, implying that range aliasing due to undersampling will not occur. Another

type of range aliasing is caused by having multiple pulses “in the air” simultaneously,

creating an ambiguity as to which pulse caused individual radar echoes. Section 2.5.1

introduced this effect.

Similar to kx, the maximum spacing of ky samples occurs at θ = 0. In this case,

ky can be well approximated as the height of a right triangle whose hypotenuse is

equal to mean(kx) (the mean value of kx) and where the angle between the base and

hypotenuse is δθ, the angular difference between subsequent CPI pulses. Under these

conditions

δky = mean(kx) sin(δθ). (3.28)

Substituting the definition of kx = kr (for θ = 0) and assuming P uniformly spaced

azimuth samples gives

δky =
4π

c
fc sin

(

∆θ

P

)

, (3.29)
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where fc is the center frequency. Using the small angle approximation for sin(·)
produces

δky =
4π∆θ

cP
fc. (3.30)

Using (3.21), (3.30) implies the total alias-free cross range extent ∆y is

∆y = P
λc

2∆θ
. (3.31)

Equation (3.31) is simply the number of azimuth samples P times the cross range

resolution δy.

3.11 Image Formation via Fourier Transform Methods

Previous sections reviewed the basic ideas behind SAR data collection, image

resolution, and sampling requirements. This section addresses one class of image

formation algorithms based on 2-D FT techniques.

Fourier transforming matched filtered of SAR radar echoes yields radial sam-

ples of the scene’s 2-D spatial frequency plane data. Thus, the most obvious image

formation approach is simply taking the inverse 2-D Fourier transform of this data.

Since SAR data sets are typically very large, computational load is always an image

formation issue. For this reason, early digital SAR processors sought to make use

of Fast Fourier Transform (FFT) techniques. FFTs are extremely fast methods for

taking Fourier transforms. They can be performed in multiple dimensions assuming

the data samples are arrayed on a rectangular grid. Although SAR samples are col-

lected on an approximately polar grid [128], FFT processing can be performed by

assuming the data was collected on a rectangular grid. This assumption is reason-

able for small ∆θ only (i.e., low resolution stripmap SAR systems). Imagery formed

without correcting for error due to this non-rectangular sampling is referred to as

“unfocused” [121].
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Figure 3.9: Unfocused ISAR image of four point scat-
terers. Scatterers are not well focused. Sidelobes are
perfectly vertical/horizontal due to the assumption data
is collected on a rectangular grid (∆θ = 20◦, B = 6 GHz,
40.0 dB dynamic range).

Figures 3.9 and 3.10 illustrate two ISAR images formed from the same spatial

frequency data3. The target consisted of four thin vertical wires approximating four

point scatterers. The scatterers in the unfocused image (Fig. 3.9) are somewhat

larger and more irregular than scatterers in the focused image (Fig. 3.10). Note, the

unfocused sidelobes are perfectly vertical/horizontal due to the assumption that the

data was collected on a rectangular grid. The focused sidelobes reflect the true polar

nature of the data collection. As ∆θ becomes larger, these sidelobes acquire a bow-tie

shape [90,132].

While Fig. 3.10 is well focused, this result does not imply simply accounting for

non-rectangular sampling is the only requirement for producing focused WAM-SAR

imagery. The data in Fig. 3.10 is 2-D, monostatic, and uniformly spaced. The target

was in the radar’s far-field and confined to a planar target mount. The WAM-SAR

3The data was taken in the RCS chamber at the Air Force Institute of Technology (AFIT).
Procedures for ISAR data collection and calibration are covered in Chapter IV.
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Figure 3.10: Focused ISAR image of four point scat-
terers. Scatterers are well focused. Sidelobes reflect the
polar nature of the collected data (∆θ = 20◦, B = 6
GHz, 40.0 dB dynamic range).

scenario mandates focusing of radar echoes from 3-D monstatic/bistatic near-field

targets on non-planar surfaces. These factors dramatically complicate the image

formation process. The algorithm developed and validated in Chapter V accounts for

all these effects.

The sidelobe strength illustrated in Figs. 3.9 and 3.10 is a significant issue in

SAR imaging. Most SAR images consist of large regions with relatively low-level

ground returns combined with a few very bright returns from man-made objects.

This situation gives the resulting images a large dynamic range. High sidelobe levels

therefore cause the energy from strong scatters to bleed over large portions of an

image. This energy bleeding, in-turn, can mask returns from objects of interest at

lower energy levels. For this reason amplitude windows are usually applied to SAR

data during processing. However, in this document no windows are used for sidelobe

control. This decision allows unhindered observation of the full sidelobe structure.
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3.12 Summary

This chapter provided a detailed overview of 2-D SAR image generation. It

began by highlighting key events in SAR history and introducing key role’s played by

SAR systems today. The basic principles of SAR data processing, resolution, sam-

pling, and 2-D image generation were presented using the relatively new, but increas-

ing popular spatial frequency paradigm. These principles are built around Fourier

transform theory. While many of concepts introduced here employ narrow-angle ap-

proximations (e.g., the far-field assumption), they serve as a good basis for Chapter V

which solves the image focusing problem for arbitrary 3-D bistatic geometries.
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IV. ISAR Data Collection and Calibration

Inverse Synthetic Aperture Radar (ISAR) is similar to Synthetic Aperture Radar

(SAR) in that it forms high resolution, multi-dimensional radar images. Unlike

SAR, ISAR uses target motion (instead of radar motion) to achieve high resolution,

but the basic principle is the same: the changing angular relationship between the

radar and the target adds a second dimension to the 1-D range profiles generated by

matched filtered waveform echoes.

ISAR has many useful applications. It can be used by fixed ground-based radars

to produce images of aircraft flying through the radar’s beam. It can be also be used

to make high resolution images of ships as these ships rock back and forth on ocean

waves. But most importantly for this research, ISAR can be used within a Radar Cross

Section (RCS) radar chamber to produce high resolution radar imagery of complex

targets without the need for an airborne SAR mission. This application provides

cost-effective laboratory environment for SAR/ISAR algorithm validation.

Fundamentally, RCS chambers exist to measure the RCS of complex targets.

Target RCS (usually represented by σ) is defined as [73]

σ = lim
r→∞

4πr2 |ē · Ēs|2
|Ēi|2

, (4.1)

where r represents the target range, ē is the receiver’s polarization vector, Ēs is the

scattered electric field, and Ēi is the incident electric field. The incident field is treated

as a scaler since it refers to the electric field strength which impinges on the scatter-

ing target. RCS information allows designers to identify (and perhaps modify) a

target’s geometric features which scatter radar energy in a given (usually monostatic)

direction. By reducing the scattered energy, the enemy radar’s probability of target

detection falls. However, this research is focused not on controlling target scattering,

but developing high-quality imaging algorithms applicable to Wide-Angle Multistatic

Synthetic Aperture Radar (WAM-SAR).
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The remainder of this chapter focuses on data collection and calibration pro-

cesses in the Air Force Institute of Technology’s (AFIT’s) RCS chamber. The re-

sultant data is used to form ISAR images, providing laboratory-based validation of

WAM-SAR research efforts in both the focused image formation (Chapter V) and

anti-aliasing (Chapter IX) arenas.

4.1 RCS Range Types

The RCS range provides an approximation to a free space environment for

measuring target scattering of ElectroMagnetic (EM) waves. In order to approximate

a free space environment, the RCS range must ensure received radar echoes come

only from the interactions between the incident wave and the target. Any scattering

from the range itself, or multipath echoes from interactions between the target and

the range, corrupt the measurements.

There are four major types of RCS ranges [136]. The simplest and cheapest

variety, the type owned by AFIT, is the static indoor far-field range. These ranges

have their walls, floor, and ceiling coated with broadband pyramidal and/or wedge-

shaped absorber to minimize reflections. The target is typically mounted on a pylon,

keeping it as far away from the absorber as possible, minimizing target/absorber

interactions. An antenna is mounted as far from the target as practical. The antenna

emits a series of spherical wave pulses, which are approximately planar over a small

volume centered on top of the target mount. This volume defines the chamber’s “quiet

zone” and determines the maximum target dimensions allowable when assuming far-

field illumination [136]. Section 4.2 derives quite zone specifications.

The second major RCS range type is the static indoor compact range. The

chamber design is nearly identical to a static indoor far-field range, but in this case

one or more reflectors collimate the incident radar beam. This configuration creates a

much larger quiet zone without increasing the distance between the radar and target.

The additional reflectors add substantially to the chamber’s cost and complexity. The

Air Force Research Laboratory (AFRL) operates such a chamber at Wright Patterson
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Figure 4.1: AFRL RCS Chamber Diagram. The two reflectors colli-
mate the EM waves increasing quiet zone size [4].

Air Force Base (AFB). Figure 4.1 shows a diagram of AFRL’s static indoor compact

range. Figure 4.2 shows a photograph of the same chamber. The radar is located in a

small room beneath the main chamber. A set of two reflectors redirect and collimate

the transmitted/reflected EM waves, illuminating the target with approximately pla-

nar wavefronts. The target rotates on its mount, providing automated measurements

at multiple orientation angles.

The final two RCS range types are built outdoors. A static outdoor far-field

range is similar to its indoor counterpart except it does not have an enclosing struc-

ture. Outdoor ranges must deal with multipath echoes due to the reflection of target

energy off the ground plane. Such a range must also periodically characterize the

outdoor environment to account for changes in the target background. The primary

advantage of a static outdoor far-field range, relative to its indoor counterpart, is

the ability to use much larger targets. This utility comes at much greater expense

and complexity. The National RCS Test Facility (NRTF) at Holloman AFB operates

several ranges of this type. The second outdoor range type is the dynamic outdoor

far-field range. Target RCS is measured in flight by a fixed radar on the ground.

Air-dropped spheres provide calibration. This type of test is much more expensive

than any of the three previous RCS data collections.
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Figure 4.2: AFRL RCS Chamber Photograph. The main reflector is
visible in front of the target aircraft. The two people at the reflector’s
lower left corner indicate approximate scale [4].

4.2 Quiet Zone

The quiet zone is the RCS chamber region giving reliable far-field target RCS

measurements [11, 73]. The approximately planar incident waves have the desirable

properties of a uniform phase front and uniform amplitude independent of both angle

and range. These properties greatly simplify the RCS measurement and ISAR imaging

processes. The derivations in this section are only applicable to far-field RCS chambers

like AFIT’s.

The derivation of quiet zone dimensions requires a brief introduction to EM

wave propagation principles. It is well known the Green’s function Ψ describing the

free-space electric field contribution from an elemental charge or source current is

given by

Ψ =
e−jkr

4πr
, (4.2)

where k (wave number) has the usual k = 2π/λ definition and the radius r denotes

the distance between the source and the observation point [10, 73]. The electric field

81



magnitude |Ē| is proportional to the product of this Green’s function and the intensity

of the source current I

|Ē| ∝ I

r
. (4.3)

This equation assumes r ≫ λ, ensuring the field is composed of a purely radiated

field.

In order to generate a plane wave, it is necessary to drive both r → ∞ and

I → ∞. It is not possible to generate a plane wave within the confines of a finite

chamber. None-the-less, it is possible to generate a good plane wave approximation

over a finite region. Assuming the contributions from the chamber itself have been

minimized, the size of this region is determined by a number of effects including:

1. Range attenuation of the incident wave

2. Non-uniform antenna pattern (e.g., finite beamwidth) of the radar antenna

3. Spherical phase variation of the incident wave

Figure 4.3 shows the top view of a hypothetical target in an ISAR chamber.

Illumination is from the left. The quite zone dimensions determine maximum target

depth D and width W , as explained in the following paragraphs.

The first non-ideal characteristic of RCS chamber radar waves is the range at-

tenuation of the incident wave. As shown in (4.3), EM wave amplitude is proportional

to 1/r. Within an RCS chamber, a large target diameter may be a significant fraction

of the range to the illuminating radar. In this case, the amplitude of the incident

wave striking the target’s front and back edges can be significantly different, artifi-

cially weighting the RCS measurements and scaling the eventual ISAR image. To keep

this variation minimal, the maximum target depth D is usually kept small enough to

ensure amplitude variation due to range differences is less than 1.0 dB [136].

Using this criterion, it is possible to derive the relationship between the range to

the target center rc and the target depth D. The first derivation step involves setting

the ratio of the field magnitudes |Ē(r)| at the front and back of the target equal to
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Figure 4.3: ISAR target depth D and width W viewed from above.

an arbitrary variable x. That is,

x =

∣

∣Ē
(

rc − D
2

)∣

∣

∣

∣Ē
(

rc + D
2

)∣

∣

. (4.4)

Since |Ē(r)| ∝ 1/r this equation can be rewritten as

x =
rc + D

2

rc − D
2

. (4.5)

Solving for rc yields

rc =
D

2

(

x + 1

x − 1

)

. (4.6)

Equation (4.4) is the ratio of the electric field strength between the front and back

of the target. For a 1.0 dB allowable variation, the numerical value of x is given by

100.05 ≈ 1.13, allowing evaluation of (4.6)

rc ≈ 8.7D. (4.7)
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Equation (4.7) implies the target’s total range extent must be less 8.7 times the

distance from the radar to the target center. AFIT’s RCS chamber has rc = 27 ft

(8.23 m) implying D must be less than about 37 in (0.95 m).

The second effect that must be accounted for when determining quiet zone

size is the non-uniform beamwidth of the illumination antenna. Because there is no

known antenna structure which radiates uniformly in all directions, the transmitted

amplitude varies as a function of angle [11]. Similar to the range amplitude variation,

the angular amplitude variation must be less than a specified tolerance to assume

plane wave target illumination. The angular variation limits the target width W .

This effect is usually small compared to the cross range phase variation. For this

reason, the angular antenna pattern is often ignored when deriving the quite zone.

The expected phase variation across the wavefront is usually the limitation

factor on quite zone dimensions. The plane wave assumption used in traditional RCS

chambers means waves striking two scattering elements at the same range location are

assumed to be in phase regardless of the scatterers’ cross range locations. However,

the spherical nature of the Green’s function Ψ indicates true phase varies according

to both range and cross range locations.

Figure 4.4 illustrates the geometry used to derive phase variation effects. Total

target width is denoted W and the range from the radar to the target center is denoted

rc. Using the Pythagorean Theorem, the range to the target’s edge re is given by

re =

√

r2
c +

(

W

2

)2

. (4.8)

The range difference between the target center and target edge is

re − rc =

√

r2
c +

(

W

2

)2

− rc. (4.9)
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Multiplying by 2π/λ converts this difference from distance to spatial frequency,

2π

λ
(re − rc) =

2π

λ





√

r2
c +

(

W

2

)2


 − 2π

λ
rc. (4.10)

The left hand side is simply the maximum phase variation φmax

φmax =
2π

λ





√

r2
c +

(

W

2

)2


 − 2π

λ
rc. (4.11)

Extracting r2
c from the square root operation gives

φmax =
2π

λ
rc





√

1 +

(

W

2rc

)2

− 1



 . (4.12)

Assuming rc ≫ W and using
√

1 + x ≈ 1 +
x

2
, (4.13)

for small x gives

φmax =
2π

λ
rc

[

1

8

(

W

rc

)2
]

. (4.14)

Solving for rc results in

rc =
πW 2

4λφmax

. (4.15)

Although the selection of φmax is somewhat arbitrary, for most antennas, setting

φmax = π/8 rad gives good results over a wide variety of conditions [11, 73]. This

value allows (4.15) to be simplified to

rc =
2W 2

λ
. (4.16)

Equation (4.16) is also known as the far-field requirement and states for a given target

cross range width W , plane wave illumination may be assumed when rc ≥ 2W 2/λ [73].
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The same result applies in the vertical dimension, indicating maximum target height

(H) is also determined by (4.16).

Combining the results of (4.7) and (4.16) defines the quiet zone dimensions as

a box of depth D, width W , and height H = W . As long as the target is confined

to this box, it is safe to assume plane wave illumination. For AFIT’s RCS chamber,

assuming a maximum frequency of 18 GHz and rc = 27 ft (8.23 m) gives nominal

quiet zone dimensions of 37.2× 10.3× 10.3 in (0.95D× 0.26W × 0.26H m). However,

ISAR works by taking measurements over a collection of angles. Thus, guaranteeing

the target remains confined to the quiet zone for any possible rotation angle in the

range/cross range plane requires the true quiet zone be a cylinder inscribed within the

rectangular box. Since W < D, the dimensions of this final quiet zone are cylindrical

with both a height and diameter of W = 10.3 in (0.26 m).

4.3 AFIT’s Indoor Far-Field RCS Chamber

The previous section derived the quiet zone size, determining the maximum

target dimensions. This section introduces the RCS chamber hardware itself.

The radar system used in AFIT’s chamber is the Lintek 4000. The Lintek 4000

system produces a series of single-frequency sinusoidal pulses used to sample the target

response to individual frequencies. Table 4.1 lists critical Lintex 4000 radar param-

eters. The frequency range is 6-18 GHz. The radar has two channels, one used for

monostatic collections, the other placed on a movable arm capable of receiving bistatic

radar echoes. In the monostatic configuration, only Vertical transmit/Vertical receive

(VV) and Horizontal transmit/Horizontal receive (HH) polarizations are possible (i.e.,

co-polarization), but using the bistatic configuration Vertical transmit/Horizontal re-

ceive (VH) and Horizontal transmit/Vertical receive (HV) polarization measurements

are also possible (i.e., cross-polarization)1. The Pulse Repetition Frequency (PRF),

range gate delay, and gate width are software selectable.

1Although the chamber can collect bistatic cross-polarization data, the calibration procedures
introduced in this chapter are not applicable to the cross-polarization case.
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Figure 4.4: Relationship between the range to target center rc and
the range to target edge re. The plane wave/far-field assumption used
to derive the cross range quiet zone extent assumes rc ≈ re. How-
ever, as target width W increases, the true spherical nature of the EM
waves/phase fronts invalidates this assumption, defining the quite zone
boundary.

Table 4.1: Lintek 4000 Parameters [2].
Parameter Value
Frequency 6-18 GHz
Number of Channels 2
TX/RX Polarization VV, HH, VH, HV
PRF 1.5 kHz - 10 MHz
Noise Figure < 4.0 dB
Range Gate Delays 0-2.56 µsec
Gate Widths 5-1000 nsec
Rise Time 2 nsec
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Figure 4.5: Top view of RCS chamber coordinate system. 2-D im-
ages are produced in the xy-plane, defined relative to the target mount
center. The TX/Monostatic RX horn is at a fixed angle of 180◦ while
the bistatic RX horn may be positioned at any angle θ in the xy-plane.
The bistatic angle β is critical for determining the target’s scatterer
characteristics.

Figure 4.5 illustrates the coordinate system used to collect and process RCS

data. The origin is at the target mount center. Angles are calculated relative to

the x-axis. The Transmit (TX) / Monostatic Receive (RX) horn is fixed in both

range (27’) and angle (180◦). The Bistatic RX horn is fixed in range (8’) but can

be rotated to an arbitrary angle θ in the xy-plane. The bistatic angle β denotes the

angle between the TX and bistatic RX antennas.

Figure 4.6 shows the RCS chamber interior. The target is located on top of the

ogive target pylon in the chamber’s center. The target is mounted on a styrofoam

block. Styrofoam is used because it is essentially invisible to the radar, allowing the

target to appear as though it is simply floating above the pylon. The pylon’s cross-

section has an ogive (football-like) shape and is tipped towards the TX antenna.

These two features minimize the pylon’s RCS. The pylon also contains a stepper-

motor used to rotate the target (and the styrofoam mount) during the data collection

process. Towards the left side of the image is the bistatic arm topped with its horn
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receiver2. This arm can be positioned anywhere in a 360◦ arc around the target mount,

although care must be taken to minimize reflections from the arm itself, especially

when θ ≈ 180◦ and the bistatic arm shadows the target from transmitter illumination.

Note, the target shown is significantly larger than the quiet zone, invalidating the far-

field illumination assumption. This situation is addressed in Chapter V.

Figure 4.7 shows the horn used for transmission and monostatic reception. The

horn is oriented diagonally to create a more narrow beam in the azimuth plane (i.e.,

range/cross range plane or xy-plane), keeping more of the radar energy away from

the side walls. This horn is identical to the bistatic reception horn shown in Fig. 4.6.

Figures 4.8 and 4.9 illustrate the operator terminal and radar hardware respec-

tively. The operator terminal provides the user interface to the Lintek 4000 software.

The TV monitor provides a live video feed from the RCS chamber. The small black

control box is used to control the monostatic antenna polarization. The computer

rack contains the Hewlett-Packard signal generators and network analyzers used to

generate and sample the radar waveforms. They are controlled from the operator

terminal.

Pulse width and PRF are selected based on two competing requirements. First,

the pulse must be short enough and the PRF must be low enough to prevent si-

multaneous transmission and reception. Second, the pulse must be long enough to

simultaneously cover the entire target. Figure 4.10 shows how these requirements are

balanced for a monostatic radar located a distance rc from the target center with a

target depth D. At time 0, the radar transmits pulse of duration τ . Time tf corre-

sponds to the beginning of the pulse echo from the target’s front edge (closest to the

radar). From times tf to tf + τ , the echo from the target’s front edge returns to the

radar. To prevent simultaneous TX/RX, τ < tf . Times tb to tb + τ indicate when the

echo from the target’s back edge returns to the radar. Finally, at time T= 1/PRF,

the entire process repeats. Again, to prevent simultaneous TX/RX, tb + τ < T . Note,

2The bistatic arm is capable of reception only, not transmission.
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Figure 4.6: AFIT’s RCS chamber. Bistatic arm and horn receiver
at left. Sample target on styrofoam mount shown on top of ogive py-
lon. Chamber walls and floor covered by absorber. Note, the target
shown (D ≈ 5 ft) is significantly larger than the quiet zone, invalidat-
ing the far-field illumination assumption. This situation is addressed
in Chapter V.
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Figure 4.7: TX/monostatic RX horn for AFIT’s RCS chamber. Di-
agonal orientation narrows the mainbeam in the xy-plane. Pyramidal
absorber surrounds the antenna structure.
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Polarization Control

Lintek 4000 Data Collection Software
TV Monitor

Figure 4.8: Operator terminal for AFIT’s RCS chamber. Computer screen
display shows Lintek 4000 software. TV monitor shows live picture of RCS
chamber. Black control box used to set TX horn polarization.
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Figure 4.9: HP signal generators for AFIT’s RCS chamber.
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Figure 4.10: RCS chamber timing requirements.

there is a period of time when echoes from the front and back of the target over-

lap. This overlap is critical since samples taken during this time provide the target

response to Continuous Wave (CW) illumination at the given frequency. The radar

collects a single complex sample of the echo at ts, roughly the mid-point of the over-

lap, representing the target response to the given frequency with a single complex

number. To ensure such an overlap exists, the total target length must not exceed

cτ/2. Table 4.2 shows the calculation of critical times in Fig. 4.10 in terms of rc and

D. The default setting of pulse width τ is 10 nsec. This selection supports a maxi-

mum depth of D = cτ/2 = 1.5 meters. Note, D is significantly larger than the quiet

zone depth implying any target within the quiet zone is simultaneously illuminated

by a single radar pulse, ensuring a CW measurement for an appropriately chosen ts.

Once the pulse width and PRF are selected, the user sets the gate width and

range gate delay. The gate width controls the size of the hardware range gate, and it

tells the receiver how long to record data from the target echoes. The range gate must

be wide enough to capture sufficient return from the entire target, but short enough

to reject unwanted echoes from the chamber’s walls. The default value is 10 nsec,

the same as the pulse width τ . The range gate delay determines how long after

pulse transmission the radar begins recording data. The default value for monostatic

collections is 87 nsec. This value is based not only on the round trip propagation time

of the transmitted waveform (≈ 55 nsec), but also on inherent delays in the radar

hardware.
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Table 4.2: RCS Chamber timing requirements. Events
must occur in the order listed. Figure 4.10 depicts these
times graphically.
Time Formula Significance

0 n/a begin pulse TX

τ n/a end pulse TX

tf
2rc−D

c
begin RX from target front

tb
2rc+D

c
begin RX from target back

ts tb < ts < tf + τ radar samples target response

tf + τ 2rc−D
c

+ τ end RX from target front

tb + τ 2rc+D
c

+ τ end RX from target back

T 1
PRF

begin next pulse TX

With the basic hardware requirements and software settings determined, data

collection can then proceed. This process, along with the associated calibration pro-

cedure, is covered in the next section.

4.4 Data Collection and Calibration

Section 4.1 indicated the goal of an RCS range is providing an approximation

to free space where the given target’s RCS characteristics can be measured without

interference from the surrounding environment. In AFIT’s indoor far-field range, a

primary way of reducing the contribution from the floor, walls, and ceiling is coating

them with appropriately shaped absorbing material to try and minimize reflections

from these sources. This absorbing material is visible in Fig. 4.6. Despite these

efforts, reflections from these sources still contribute significantly to the overall radar

echoes. The use of hardware range gating also eliminates unwanted echo energy, but

is only effective against radar echoes reaching the radar significantly before or after

target echoes. Elimination of residual unwanted echo energy is accomplished using
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a procedure called background subtraction [136]. This procedure drives the data

collection process.

4.4.1 Data Collection Overview. RCS data collection begins by placing the

target/styrofoam mount on the pylon. The desired frequency and azimuth values are

programmed into the Lintek software before initiating the collection. Once started,

the radar transmits a series of pulses at each frequency. Each pulse echo is sampled

using In-phase Quadrature (I/Q) sampling to provide a complex sample. These pulse

echoes are then integrated3 to produce a single complex number proportional the

target’s scattered electric field Etar
s . The radar performs the same procedure for each

specified frequency.

After completing the frequency sweep, the radar must change its orientation

with respect to the target. For monostatic or fixed bistatic collections (i.e., when β is

constant throughout the collection), this orientation change is accomplished using the

pylon’s stepper motor to rotate the target directly. However, the Lintek software also

precisely controls the bistatic arm’s location, allowing data collection using a variable

bistatic angle. Chapter V uses all three data collection geometries: monostatic, fixed

bistatic, and variable bistatic.

Unfortunately, the Etar
s measurements contain more than just scattered target

energy. Despite the pains taken to minimize the contribution from the chamber, the

background still forms a significant component of the Etar
s measurements. To mini-

mize this effect, an identical set of measurements are taken, this time with only the

styrofoam mount, not the target. These measurements (Ebkg
s ) represent the scat-

tered electric field from the chamber background. Another pair of target/background

measurements are then collected using a calibration target (Ecal
s and Ecbk

s ) with an

analytically known scattered field Eext
s . These four files: target, target background,

calibration target, and calibration target background, along with the calibration tar-

3The effects of thermal noise are greatly reduced by integrating the echoes from a number of
pulses since target echoes add coherently while noise adds incoherently.
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get’s known scattering characteristics, provide the necessary data needed for RCS

data calibration. The calibrated data can then be used for ISAR imaging.

4.4.2 Background Subtraction Procedure. Understanding the background

subtraction process used for data calibration requires a more in-depth investigation

of the interactions between the radar waves and the RCS chamber/target. This

section examines the bistatic data calibration problem in the frequency domain since

it allows scattering characteristics of the target and chamber to be treated as transfer

functions.

Figure 4.11 (adapted from [67]) illustrates the frequency domain relationship

between the transmitted and received radar pulses. This relationship applies to each

of the four files: target, target background, calibration target, and calibration target

background. The radar generates an initial transmitted electric field ETX(f). This

field is passed through the transmission antenna, whose transfer function HTX(f)

defines the incident field Ei(f) = HTX(f)ETX(f). This incident field interacts with

the target/chamber through three different transfer functions:

1. HT(f): the target’s transfer function containing the desired target scattering

information.

2. HB(f): the chamber background transfer function including returns from the

chamber itself, the styrofoam target mount, and the ogive pylon.

3. HTB(f): the transfer function describing interactions between the target and

the chamber background.

Note, the “target” in the HT(f) or HTB(f) transfer functions could refer either to the

true ISAR imaging target or the calibration target depending on which file is being

collected.

The scattered field Es(f), required for RCS measurement (see (4.1)), is defined

as

Es(f) = HT(f)Ei(f) = HT(f)HTX(f)ETX(f). (4.17)
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HTX(f)

HT(f) HB(f) HTB(f)

HRX(f) +++

NTH

ETX(f)

ERX(f)

Ei(f)

Es(f)

Figure 4.11: Frequency domain schematic of RCS data collection il-
lustrating the relationship between the transmitted and received wave-
forms. Target scattering information is contained in the transfer function
HT(f) = Es(f)/Ei(f) (Adapted from [67]).

Unfortunately, the scattered field is combined with the results of the other two transfer

functions HB(f) and HTB(f) before passing through the receive antenna transfer

function HRX(f). Receiver thermal noise NTH then corrupts the signal before the

final field measurement ERX(f) is taken. Note, Fig. 4.11 ignores coupling between

the transmit and receive antennas.

Using the schematic in Fig. 4.11, the measured data from each of the four files

can be represented as

Etar
RX(f) =

[

Htar
T (f) + Htar

B (f) + Htar
TB(f)

]

HTX(f)HRX(f)ETX(f) + N tar
TH, (4.18)

Ebkg
RX (f) =

[

Hbkg
T (f) + Hbkg

B (f) + Hbkg
TB (f)

]

HTX(f)HRX(f)ETX(f) + Nbkg
TH , (4.19)

Ecal
RX(f) =

[

Hcal
T (f) + Hcal

B (f) + Hcal
TB(f)

]

HTX(f)HRX(f)ETX(f) + N cal
TH, (4.20)

Ecbk
RX (f) =

[

Hcbk
T (f) + Hcbk

B (f) + Hcbk
TB (f)

]

HTX(f)HRX(f)ETX(f) + N cbk
TH , (4.21)
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where the superscripts “tar,” “bkg,” “cal,” and “cbk” refer to the target, target

background, calibration target, and calibration target background files respectively.

The functions ETX(f), HTX(f), and HRX(f) are assumed constant over all four files.

The calibration process begins by assuming thermal noise is negligible. This

assumption is reasonable, since an arbitrary number of radar pulse echoes may be

integrated during data collection. Typically, the use of 64 pulses (increasing the

Signal-to-Noise Ratio (SNR) by 20 log10(
√

64) = 18.1 dB) is sufficient for AFIT’s

chamber. The process proceeds by calculating the complex ratio ϑ for each complex

I/Q value

ϑ =
Etar

RX(f) − Ebkg
RX (f)

Ecal
RX(f) − Ecbk

RX (f)
. (4.22)

Plugging in the appropriate definitions from (4.18)-(4.21) yields

ϑ =
[Htar

T (f) + Htar
B (f) + Htar

TB(f)] −
[

Hbkg
T (f) + Hbkg

B (f) + Hbkg
TB (f)

]

[

Hcal
T (f) + Hcal

B (f) + Hcal
TB(f)

]

−
[

Hcbk
T (f) + Hcbk

B (f) + Hcbk
TB (f)

] , (4.23)

where the common ETX(f)HTX(f)HRX(f) term has been canceled and noise terms

ignored. Note,

Hbkg
T (f) = Hcbk

T (f) = 0. (4.24)

Hbkg
TB (f) = Hcbk

TB (f) = 0, (4.25)

since no “targets” are present during either background measurement. This result

allows ϑ to be simplified to

ϑ =
[Htar

T (f) + Htar
B (f) + Htar

TB(f)] − Hbkg
B (f)

[

Hcal
T (f) + Hcal

B (f) + Hcal
TB(f)

]

− Hcbk
B (f)

, (4.26)

Furthermore,

Htar
B (f) = Hbkg

B (f) 6= Hcal
B (f) = Hcbk

B (f). (4.27)

Equation (4.27) states the chamber background transfer functions may differ between

the true target and calibration target files since these targets may have different
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styrofoam mounts. Using (4.27), (4.26) simplifies to

ϑ =
Htar

T (f) + Htar
TB(f)

Hcal
T (f) + Hcal

TB(f)
. (4.28)

The final and most critical assumption of the background subtraction process is that

target/backround interactions may be ignored:

Htar
TB(f) = Hcal

TB(f) = 0. (4.29)

This assumption precludes accounting for any multipath interactions between the

target and the mount. This limitation does not include multipath interactions between

the target and the chamber walls, since the additional propagation distance for these

paths places the multipath echoes outside the hardware range gate.

Applying (4.29), ϑ becomes

ϑ =
Htar

T (f)

Hcal
T (f)

. (4.30)

The target transfer function definition, HT(f) = Es(f)/Ei(f), allows (4.30) to be

rewritten as

ϑ =
Etar

s (f)

Ecal
s (f)

. (4.31)

Recall that a target’s RCS is defined as

σ = lim
r→∞

4πr2 |ē · Ēs|2
|Ēi|2

. (4.32)

Using this definition, obtaining RCS measurements using the results of the background

substraction process is simply a matter of multiplying (4.31) by an appropriately

scaled version of the known calibration target scattering characteristics

σ = lim
r→∞

∣

∣

∣

∣

2
√

πrϑ
Eext

s (f)

Eext
i (f)

∣

∣

∣

∣

2

, (4.33)
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where Eext
s (f) is the exact value of the calibration target’s scattered field and Eext

i (f)

is the incident field assumed during derivation of Eext
s (f) (Eext

i (f) is not necessarily

equal to Ei(f), the incident field strength used during data collection).

ISAR imaging requires complex data, but the definition of σ takes the magnitude

of the appropriately scaled electric field ratios. This observation means the required

scaled I/Q data output from the calibration process (denoted ϕ) is actually

ϕ = lim
r→∞

[

2
√

πrϑ
Eext

s (f)

Eext
i (f)

]

, (4.34)

where RCS is available as

σ = |ϕ|2. (4.35)

4.4.3 Calibration with a Conducting Sphere. Having obtained ϑ from

measured data, the final step in the calibration process is analytically determining

Eext
s /Eext

i for the calibration target. First and foremost, this requirement mandates a

suitable calibration target. Although different calibration targets are used for many

different circumstances, two key requirements dominate for the purposed of this re-

search: availability of an exact scattering solution and insensitivity to calibration tar-

get misalignment errors. In both cases, the ideal solution is a conducting sphere. The

bistatic scattered field can be analytically determined and its rotational invariance

removes any concerns about sphere “orientation” during calibration data collection.

The most significant limitation resulting from using a sphere for calibration is only

co-polarization (i.e., HH and VV) measurements are possible. Cross-polarization mea-

surements (i.e., HV and VH) are not feasible. The following analysis demonstrates

this fact.

4.4.3.1 Scattered Field for a Plane Wave Illuminated Conducting Sphere.

Scattered field equations for interactions between a plane wave and conducting

sphere are derived in a number of sources [10, 59, 123]. The development presented

here is excerpted from [59].
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Figure 4.12: Spherical coordinate system for calcula-
tion of Ēs from a conducting sphere of radius a illumi-
nated by a plane wave whose electric field is x-directed
and propagates in the z-direction.

First, it is necessary to define the relevant coordinate system. The scatter

electric field vector Ēs is presented in the spherical coordinate system illustrated by

Fig. 4.12. An incident plane wave whose electric field orientation is defined in the

x-direction and magnetic field orientation is defined in the y-direction illuminates a

conducting sphere of radius a. These conventions lead to incident wave propagation

in the x̄ × ȳ = z̄-direction, where × denotes cross product. The scattered field

vector Ēs at an arbitrary location (r, θ, φ) is defined by its spherical components

Ēs = [Esr , Esθ
, Esφ

]T, where [·]T denotes a matrix transpose.

A complete scattered field derivation would unnecessarily complicate this sec-

tion, but it is important to note, the scattered field solution is built around spherical
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Bessel functions. Standard (e.g., cylindrical) Bessel functions are solutions to

x
d

dx

(

x
dy

dx

)

+ (x2 − n2)y = 0, (4.36)

where n denotes the equation’s “order.” Solutions to this equation are grouped into

categories called “kinds.” Solutions of the first kind are denoted Jn(x), while solutions

of the second kind are denoted Yn(x). For the scattering problem at hand, it is also

useful into introduce Hankel functions of the second kind, defined as

H(2)
n (x) = Jn(x) − jYn(x). (4.37)

The derivative of these solutions is given by

J ′
n(x) = Jn−1(x) − n

x
Jn(x) = −Jn+1(x) +

n

x
Jn(x) (4.38)

and

H(2)′

n (x) = H
(2)
n−1(x) − n

x
H(2)

n (x) = −H
(2)
n+1(x) +

n

x
H(2)

n (x), (4.39)

where the prime is used to indicate a derivative.

Since the scattering problem involved a spherical object, spherical Bessel func-

tions are more appropriate than the cylindrical versions introduced thus far. Tradi-

tionally, spherical Bessel functions are written using the lowercase letters jn(x) and

h
(2)
n (x), respectively [1]. However, electromagnetics problems often use a slightly mod-

ified form of the spherical Bessel functions denoted [10,59]

Ĵn(x) = xjn(x) =

√

πx

2
Jn+1/2(x) (4.40)

and

Ĥ(2)
n (x) = xh(2)

n (x) =

√

πx

2
H

(2)
n+1/2(x). (4.41)
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Another differential equation used in the scattered field derivation is the asso-

ciated Legendré equation

1

sin θ

d

dθ

(

sin θ
dy

dθ

)

+

[

n(n + 1) − m2

sin2 θ

]

y = 0, (4.42)

for 0 ≤ θ ≤ π. The scattered field solution makes use of this equation’s solutions,

termed associated Legendré functions of the first kind. These solutions can be ex-

pressed as polynomials Pm
n (u), determined recursively via

Pm
n (u) = (−1)m(1 − u2)m/2dmPn(u)

dum
, (4.43)

where

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n (4.44)

and ! indicates a factorial. Derivatives of these solutions are also required and can be

calculated via

Pm′

n (u) =
1

1 − u2

[

−nuPm
n (u) + (n + m)Pm

n−1(u)
]

. (4.45)

Armed with the preceding mathematical machinery, it becomes possible to de-

rive the asymptotic solution for the scattered field Ēs = [Esr , Esθ
, Esφ

]T as [59]

Ēext
s =











0

jEext

i

kr
e−jkr cos φ

∑∞
n=1 jn

[

bn sin θP 1′

n (cos θ) − cn
P 1

n(cos θ)
sin θ

]

jEext

i

kr
e−jkr sin φ

∑∞
n=1 jn

[

bn
P 1

n(cos θ)
sin θ

− cn sin θP 1′

n (cos θ)
]











. (4.46)

where

bn = −an
Ĵ ′

n(ka)

Ĥ
(2) ′

n (ka)
, (4.47)

cn = −an
Ĵn(ka)

Ĥ
(2)
n (ka)

, (4.48)
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and

an =
j−n(2n + 1)

n(n + 1)
. (4.49)

Using (4.46), the scattered electric field components at an arbitrary location can

be found by plugging in the appropriate (r, θ, φ) values. Under the special case of

monostatic illumination, when θ = π, the sin θ term evaluates to zero giving [59]

lim
θ→π

P 1
n(cos θ)

sin θ
=

(−1)n

2
n(n + 1) (4.50)

and

lim
θ→π

sin θP 1′

n (cos θ) =
(−1)n

2
n(n + 1). (4.51)

These relationships keep the scattered field equations well behaved in the monostatic

case.

4.4.3.2 Co-polarization and Cross-polarization Conditions. Having

obtained a generic expression for the scattered field vector Ēext
s at an arbitrary loca-

tion, it now becomes possible to determine the scalar scattered field to the incident

field ratio, as required by the calibration process

Eext
s

Eext
i

=
ē · Ēext

s

Eext
i

. (4.52)

Each of the four polarization values (HH, HV, VV, VH) results in a different ē · Ēext
s

value.

Given a far-field conducting sphere of radius a, the vector scattered field Ēext
s is

determined entirely by the incident (i.e., transmit) polarization. This result implies

HH and HV polarizations share a common Ēext
s as do VV and VH polarizations.

Figure 4.13 is adapted from Fig. 4.5 to illustrate the calibration scenario when the

incident wave is horizontally polarized. This horizontal polarization defines the xyz-
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Figure 4.13: Calibration coordinate system for horizontally polarized
incident waves. Incident wave propagation defines z-direction while
incident wave E-field polarization defines x-direction. Co-planar rela-
tionship between the antennas and calibration sphere ensures φ = 0◦.

coordinate system with respect to the antennas and calibration target4. The incident

field propagates in the z-direction and its E-field points in the x-direction. Using the

definitions of θ and φ from Fig. 4.12, the fact the receive horn is confined to the xz-

plane guarantees φ = 0◦. The angle θ, used here to define determine Ēs, is equivalent

to the θ defining the angle between the image domain’s x-axis and the bistatic horn

location (Fig. 4.5).

Since φ = 0◦ for a horizontally polarized transmit wave, Ēext
s = [Eext

sr
, Eext

sθ
, Eext

sφ
]T

immediately simplifies to

Ēext
s =











0

jEext

i

kr
e−jkr

∑∞
n=1 jn

[

bn sin θP 1′

n (cos θ) − cn
P 1

n(cos θ)
sin θ

]

0











. (4.53)

4This coordinate system, used only for calibration purposes, is different than the system shown
in Fig. 4.5. Figure 4.5’s definition is used throughout this document to define the image domain
coordinates. Chapter V extends the image domain coordinate system to three dimensions.
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The final piece of information needed to determine the scattered E−field col-

lected at the receiver is the receiver’s polarization vector ē = [er, eθ, eφ]
T. In the

co-polarized case (i.e., HH)

ē =











0

1

0











, (4.54)

indicating

Eext
s

Eext
i

=
j

kr
e−jkr

∞
∑

n=1

jn

[

bn sin θP 1′

n (cos θ) − cn
P 1

n(cos θ)

sin θ

]

. (4.55)

In the cross-polarized case (i.e., HV)

ē =











0

0

1











, (4.56)

indicating
Eext

s

Eext
i

= 0. (4.57)

Equation (4.57) says there is no scattered E-field energy received in HV polarization

indicating calibration of HV data is not possible using a conducting sphere calibration

target.

The calibration scenario for vertically polarized incident waves requires defini-

tion of a new coordinate system. As before, the incident wave propagation is in the

z-direction and the E-field is x-directed, but this time φ = 90◦. The scattered field

Ēext
s becomes

Ēext
s =











0

0

jEext

i

kr
e−jkr

∑∞
n=1 jn

[

bn
P 1

n(cos θ)
sin θ

− cn sin θP 1′

n (cos θ)
]











. (4.58)
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The receiver’s polarization vector ē in the co-polarization case (i.e., VV) is

ē =











0

0

−1











, (4.59)

resulting in

Eext
s

Eext
i

=
−j

kr
e−jkr

∞
∑

n=1

jn

[

bn
P 1

n(cos θ)

sin θ
− cn sin θP 1′

n (cos θ)

]

. (4.60)

However, the angle θ used to define the angle between the bistatic horn and image

domain x-axis is now equal to the negative of the angle θ used to calculate Ēext
s . To

rectify this situation a change of variables is performed. Making use of

sin(−θ) = − sin θ (4.61)

and

cos(−θ) = cos θ, (4.62)

the new expression for Ēext
s is given by

Eext
s

Eext
i

=
j

kr
e−jkr

∞
∑

n=1

jn

[

bn
P 1

n(cos θ)

sin θ
− cn sin θP 1′

n (cos θ)

]

. (4.63)

In the cross-polarization case (i.e., VH)

ē =











0

−1

0











, (4.64)

leading to
Eext

s

Eext
i

= 0. (4.65)
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Figure 4.14: Calibration coordinate system for vertically polarized
incident waves. Incident wave propagation defines z-direction while
incident wave E-field is x-directed. Co-planar relationship between the
antennas and calibration sphere ensures φ = 90◦.

As in the HV case, VH polarization measurements cannot be calibrated using a con-

ducting sphere calibration target. Figure 4.14 illustrates the coordinate system for

vertically polarized incident waves.

In summary, the calibration process begins by collecting four I/Q data files.

These files contain complex scalar values representing the received fields for the target

Etar
RX, target background Ebkg

RX , spherical calibration target Ecal
RX, and calibration target

background Ecbk
RX . These samples are combined via (from (4.22) and (4.34))

ϕ = lim
r→∞

[

2
√

πr · Etar
RX − Ebkg

RX

Ecal
RX − Ecbk

RX

· Eext
s

Eext
i

]

, (4.66)

where Eext
s /Eext

i is determined by (4.55) for HH polarization and by (4.63) for VV

polarization. In both cases the r in (4.66) cancels the 1/r term in Eext
s /Eext

i . Combin-

ing this realization with the fact that the exp(−jkr) factor in Eext
s /Eext

i represents a

unit-amplitude phase constant, the limit in (4.66) may be ignored, yielding calibrated

complex I/Q data. The real RCS value σ at a given frequency/orientation is available
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as the magnitude squared of ϕ (4.35). Calibration of cross-polarization measurements

is not possible using these procedures and calibration targets. Cross-polarization cal-

ibration information is available in [21,95].

4.5 Summary

Data collection and calibration is a major component of the research validation

process. This chapter develops these methods for AFIT’s RCS chamber, used to col-

lect all the research effort’s ISAR data. It began by reviewing the major RCS data

collection facility types. It then focused on AFIT’s indoor far-field range, highlight-

ing the specific facility capabilities and limitations. The chapter then detailed the

background subtraction process used to calibrate the target scattering data. While

the calibration procedures are not new to the RCS measurement community, they are

new to AFIT, and correct for more than 10.0 dB of error in previous bistatic calibra-

tion methods. Appendix B contains the Matlabr code used for data calibration. In

addition to the ISAR images shown in Chapters V and IX, this code produced the

calibrated data previously reported in [43,76].
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V. 3-D Near-Field Bistatic SAR/ISAR Image Formation

The primary goal of this chapter is developing and demonstrating new Synthetic

Aperture Radar (SAR)/Inverse Synthetic Aperture Radar (ISAR) data pro-

cessing techniques capable of focusing Two-Dimensional (2-D) or Three-Dimensional

(3-D) SAR/ISAR images using a general radiative near-field bistatic data collection

scenario. Defocusing caused by radiative near-field effects is simply another name for

the Range Migration (RM) issue introduced in Chapter II. In addition to solving

the radiative near-field problem, the algorithm presented accounts for non-uniform

data collection geometries and warped ground planes. The result is a SAR/ISAR

algorithm capable of precisely focusing Wide-Angle Multistatic Synthetic Aperture

Radar (WAM-SAR) data.

This chapter begins by rigorously deriving the relationship between the image

domain (containing the scene or target) and the spatial frequency domain. This de-

velopment uses an arbitrary 3-D far-field bistatic collection geometry. Section 5.2

derives a 3-D SAR/ISAR image generation technique based on tomographic back-

projection principles. Unlike other methods, this approach fully accounts for vari-

able bistatic geometries where the spatial relationship between the transmitter and

receiver changes on a pulse-to-pulse basis. Section 5.3 derives 3-D SAR/ISAR res-

olutions from a spatial frequency perspective. This derivation corrects errors in the

current literature [108]1. It also develops a resolution-like metric which quantifies

expected image quality without resorting to traditional narrow-angle or narrowband

assumptions. The derivations in Sec. 5.1-5.3 are validated using actual ISAR data

in Sec. 5.4. A sample target’s theoretical spatial frequency response is compared to

the measured results using a variety of collection geometries. ISAR images are also

examined along with their resolutions. Section 5.5 removes the restrictive far-field

assumptions resulting in the final 3-D near-field bistatic imaging algorithm. This

1The relevant citation correctly accounts for bistatic effects on range resolution, but not in hori-
zontal or vertical cross range resolution.
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algorithm is validated in Sec. 5.6 using three different ISAR collections representing

three distinct SAR/ISAR scenarios.

It should be noted near-field Radar Cross Section (RCS) chamber effects can

only be observed in a far-field-type RCS chamber, similar to the one operated by the

Air Force Institute of Technology (AFIT). The additional reflectors present in a com-

pact RCS chamber eliminate the spherical wave near-field effects. While helpful for

traditional RCS measurement purposes, this feature is inappropriate for the research

effort, since it removes ability to test RM correction using laboratory-based ISAR

processing.

5.1 Spatial Frequency Domain Data Representation

The SAR/ISAR scene exists in the 3-D image domain represented by f(x, y, z).

SAR image formation has traditionally been based on a Doppler perspective using

the Doppler shift in radar echoes caused by radar platform motion to derive SAR

processing techniques [23]. However, for RCS chamber-based ISAR, data is usually

collected when neither the radar nor the target are moving. The target is rotated

between transmission/reception of radar waveforms. Under these circumstances, there

is no Doppler shift, necessitating a different processing paradigm. Unifying both SAR

and ISAR is possible using the tomographic paradigm from the medical imaging

community [99]. This approach lends itself to representation of radar data in the 3-D

spatial frequency domain F (kx, ky, kz) defined as the 3-D Fourier Transform (FT) of

f(x, y, z) [65]. This section examines a how data collected from a general 3-D bistatic

SAR/ISAR geometry can be mapped into the spatial frequency domain, leading to

SAR/ISAR processing techniques built around the Fourier transform.

5.1.1 SAR/ISAR Data Collection Geometry. Using the start-stop approx-

imation, the SAR/ISAR data collection geometry for a single Coherent Processing

Interval (CPI) pulse can be represented as in Fig. 5.1. The scene center is defined

as (0, 0, 0) in a right-hand cartesian coordinate system. Unit vectors ūTX and ūRX
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point from the origin to the radar transmission and reception platforms, respectively.

Analytically, these unit vectors are

ūTX =











cos(θTX) cos(φTX)

sin(θTX) cos(φTX)

sin(φTX)











(5.1)

and

ūRX =











cos(θRX) cos(φRX)

sin(θRX) cos(φRX)

sin(φRX)











, (5.2)

where θTX (θRX) is the azimuth angle to the transmission (reception) platform, mea-

sured relative to the x-axis, and φTX (φRX) is the elevation angle to the transmission

(reception) platform, measured from the xy-plane. The angle between ūTX and ūRX

is known as the bistatic angle β. The unit vector ūb bisects β and is given by

ūb = a (ūTX + ūRX) =











cos(θb) cos(φb)

sin(θb) cos(φb)

sin(φb)











, (5.3)

where a is a normalization constant. In general, θb 6= (θTX + θRX)/2 and φb 6=
(φTX + φRX)/2.

5.1.2 Bistatic Angle Effects on Far-Field Range. Under the far-field as-

sumption, the radar platform transmits (receives) a uniform plane wave at the same

orientation angles θ and φ to (from) every point (x, y, z) in the scene. This approxi-

mation allows the far-field range rTX (rRX) from the origin to each point (x, y, z) to

be calculated as the dot product of the vector ρ̄ = [x, y, z]T (note [·]T denotes a matrix

transpose) with the unit vector ūTX (ūRX),

rTX = ρ̄ · ūTX = [x cos(θTX) cos(φTX) + y sin(θTX) cos(φTX) + z sin(φTX)] (5.4)
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ūRX

ūTX

θRX

φRX

180 − θTX

φTX

ūb

β/2
β/2

Figure 5.1: 3-D bistatic SAR/ISAR collection geome-
try. The unit vectors ūTX and ūRX point from the scene
center towards the transmission and reception platforms,
respectively. The bistatic angle β between these two vec-
tors is bisected by the unit vector ūb.

and

rRX = ρ̄ · ūRX = [x cos(θRX) cos(φRX) + y sin(θRX) cos(φRX) + z sin(φRX)] , (5.5)

where · indicates the dot product. The set of points sharing a common rTX (rRX)

value form a plane defined by the unit normal ūTX (ūRX).
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Using (5.1)-(5.3), along with dot product and cross product definitions, allows

calculation of the triple product of ūTX, ūRX, and ūb as

ūTX × ūRX · ūb = a [sin(θTX) cos(φTX) sin(φRX) cos(θTX) cos(φTX)

+ sin(θTX) cos(φTX) sin(φRX) cos(θRX) cos(φRX)

− sin(φTX) sin(θRX) cos(φRX) cos(θTX) cos(φTX)

− sin(φTX) sin(θRX) cos(φRX) cos(θRX) cos(φRX)

+ sin(φTX) cos(θRX) cos(φRX) sin(θTX) cos(φTX)

+ sin(φTX) cos(θRX) cos(φRX) sin(θRX) cos(φRX)

− cos(θTX) cos(φTX) sin(φRX) sin(θTX) cos(φTX)

− cos(θTX) cos(φTX) sin(φRX) sin(θRX) cos(φRX)

+ cos(θTX) cos(φTX) sin(θRX) cos(φRX) sin(φTX)

+ cos(θTX) cos(φTX) sin(θRX) cos(φRX) sin(φRX)

− sin(θTX) cos(φTX) cos(θRX) cos(φRX) sin(φTX)

− sin(θTX) cos(φTX) cos(θRX) cos(φRX) sin(φRX)] = 0, (5.6)

where × denotes the cross product. Equation (5.6) guarantees ūTX, ūRX, and ūb are

coplanar. This observation implies the relationship between ūTX, ūRX, and ūb can be

studied in the 2-D plane defined by ūTX × ūRX without loss of generality. Using this

new x′y′-plane, the corresponding 2-D unit vectors ū′
TX, ū′

RX, and ū′
b allow definition

of r′TX and r′RX as

r′TX = x′ cos(ϕTX) + y′ sin(ϕTX) (5.7)

and

r′RX = x′ cos(ϕRX) + y′ sin(ϕRX), (5.8)

where the ϕTX and ϕRX are measured with respect to the x′-axis.
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Calculating bistatic angle β effects on the observed far-field range r′b begins by

defining r′b as one half the total distance traveled by the radar waveform

r′b =
1

2
(r′TX + r′RX) . (5.9)

Substitution of (5.7) and (5.8) into (5.9) and collecting terms gives

r′b =
1

2
{x′ [cos (ϕTX) + cos (ϕRX)] + y′ [sin (ϕTX) + sin (ϕRX)]} . (5.10)

Note that [145]

cos(α) + cos(γ) = 2 cos

(

α + γ

2

)

cos

(

α − γ

2

)

(5.11)

and

sin(α) + sin(γ) = 2 sin

(

α + γ

2

)

cos

(

α − γ

2

)

. (5.12)

Applying (5.11) and (5.12) to (5.10) gives

r′b =

[

x′ cos

(

ϕTX + ϕRX

2

)

+ y′ sin

(

ϕTX + ϕRX

2

)]

cos

(

ϕTX − ϕRX

2

)

. (5.13)

Unlike the general 3-D case, in two dimensions ϕb = (ϕTX + ϕRX)/2. This fact,

combined with the definition of the bistatic angle β, allows (5.13) to be rewritten as

r′b = [x′ cos(ϕb) + y′ sin(ϕb)] cos(β/2). (5.14)

Generalizing to three dimensions, the apparent far-field range rb from a vantage point

defined by ūb to any location (x, y, z), may be calculated as

rb = [x cos(θb) cos(φb) + y sin(θb) cos(φb) + z sin(φb)] cos(β/2). (5.15)

This result can also be derived graphically [65] or using a Taylor expansion [30]. The

effective compression of range values by the bistatic angle has significant consequences
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for both the image formation process and the eventual image resolution. Subsequent

sections demonstrate these effects.

5.1.3 Spatial Frequency Domain. At each CPI location, a matched filter-

based SAR system generates a complex-valued range profile p(r) denoting the strength

of the radar waveform echoes as a function of range2. On the other hand, RCS

chamber-based ISAR systems usually provide data directly in the frequency domain

P (kr). These data products are related through the One-Dimensional (1-D) FT

P (kr) = F [p(r)] =

∫ ∞

−∞

p(r) exp (−jkrr) dr, (5.16)

where F denotes the FT, r is the range in meters, kr = 4π/λ is the spatial frequency

value in radians/meter (twice the typical 2π/λ definition to account for two-way wave

propagation), and λ is transmitted/received wavelength in meters.

According to (5.15), using a bistatic collection geometry compresses the range

rb. Undoing this compression, and thus obtaining the equivalent monostatic far-

field range, involves scaling rb by the constant a = 1/ cos(β/2). However, it is well

known that scaling the data in one domain by the constant a scales the data in the

other domain by the constant 1/a [64]. This relationship indicates even though the

transmitted/received frequencies determine the kr values, the actual data acquired

corresponds to spatial frequency values kr cos(β/2).

Under the start-stop approximation, each CPI pulse provides a range profile for

a specific look direction ūb. As ūb changes throughout the CPI, subsequent pulses

provide scene information from other angles. Representing this data in the spatial

frequency domain requires extending the 1-D FT in (5.16) to a 3-D version,

F (kx, ky, kz) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f(x, y, z) exp [−j(kxx + kyy + kzz)] dxdydz. (5.17)

2Chapter III used p̂(r) to denote the radar’s estimate of the true range profile p(r). In this
chapter, all data is estimated. Theˆnotation is dropped for convenience.
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Given a range profile p(r) and the corresponding spatial frequency data P (kr), the goal

is to represent this information in the full 3-D spatial frequency domain F (kx, ky, kz).

The rotational property of Fourier transforms states rotation by an arbitrary angle in

the image domain f(x, y, z) is equivalent to rotation by the same angle in the trans-

form domain F (kx, ky, kz) [64]. This property means for a sample at a given (kr, θb, φb)

value, the corresponding frequency domain location (kx, ky, kz) is determined by

kx = kr cos(θb) cos(φb) cos(β/2), (5.18)

ky = kr sin(θb) cos(φb) cos(β/2), (5.19)

and

kz = kr sin(φb) cos(β/2). (5.20)

Thus, range profiles from individual CPI pulses can be mapped into the spatial fre-

quency domain by first taking their 1-D Fourier transform and mapping the resultant

P (kr) data samples onto the 3-D domain using (5.18)-(5.20).

5.2 Far-Field SAR/ISAR Image Formation

Section 5.1 showed how to map SAR/ISAR data into the 3-D spatial frequency

domain. This section demonstrates how this data can be converted into a far-field

scene estimate f(x, y, z).

The FT relationship between f(x, y, z) and F (kx, ky, kz) suggests effective imag-

ing algorithms can be built using multidimensional FT techniques. While the two

imaging techniques highlighted in this section are based on Fourier processing princi-

ples, it is important to mention that many non-Fourier-based SAR/ISAR processing

methods exist (e.g., [19, 38, 80]). Many of these approaches are based on spectral

estimation methods and, while they hold the promise of producing images with bet-

ter resolution than Fourier-based methods, they often do so at the expense of vastly
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higher computational loads and/or through the use of explicit scattering models for

scene objects.

5.2.1 Polar-Format Algorithm. Perhaps the most obvious approach for

obtaining an estimate of f(x, y, z) from F (kx, ky, kz) is through the application of a

3-D Inverse Fourier Transform (IFT),

f(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

F (kx, ky, kz) exp [j(kxx + kyy + kzz)] dkxdkydkz. (5.21)

The computationally expedient method of performing this calculation uses multi-

dimensional Fast Fourier Transform (FFT) techniques. The rectangular coordinates

of (5.17) allow separable computation in each of the three dimensions giving an over-

all computational complexity of O(N3 log2 N) for converting N3 spatial frequency

samples into a 3-D image with N3 voxels (i.e., N3 3-D pixels). However, this process

assumes the spatial frequency samples are collected on a rectangular grid. Accepting

this assumption and performing a 3-D Inverse Fast Fourier Transform (IFFT) on the

raw spatial frequency data results in an unfocused SAR/ISAR image [121].

While unfocused SAR processing was adequate for many early low resolution

SAR systems, higher resolutions demand correcting for the non-rectangular data col-

lection geometries. In most collection scenarios, the collection geometry can be well

approximated by a polar data collection grid. This observation is central to the Polar-

Format Algorithm (PFA) initially introduced in [128]. PFA produces a SAR image by

first interpolating the approximately polar data samples onto a rectangular grid and

then applying a 3-D IFFT to the interpolated data. The computational burden for

the complete PFA algorithm is essentially the sum of the frequency domain interpo-

lator and the 3-D IFFT [39]. A recent extension of 2-D bistatic PFA uses a modified

version of ū′
b where ϕb 6= (ϕTX +ϕRX)/2 in order to account for spatial frequency data

warping effects [109].
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5.2.2 Back-Projection Algorithm. While PFA is an intuitively attractive ap-

proach, it suffers from several implementation challenges. These challenges include:

artifacts caused by multi-dimensional frequency domain interpolation, the need to col-

lect all data before processing can begin, and the “corner-turn” operations required

by multidimensional Fourier transforms which preclude parallel computing implemen-

tations [140]. The basic Back-Projection algorithm (BPA) removes these limitations.

Initially developed for use in the medical imaging community, BPA was first pro-

posed for 2-D monostatic SAR processing [99]. Since this time, it has seen steadily in-

creasing interest in the SAR/ISAR community. Using the spatial frequency paradigm,

BPA can be extended to perform 3-D bistatic imaging. However, prior to deriving

3-D BPA, it is important to briefly return to the data collection scenario.

At each CPI location, the transmitter and receiver work together to produce

a range profile pθ,φ(r) which represents a 3-D scene projection into a 1-D function.

Assuming the scene is in the far-field, the resulting range profile pθ,φ(r) can be written

as

pθ,φ(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f(x, y, z)δ (rb − r) dxdydz. (5.22)

Equation (5.22) is a 3-D bistatic version of the Radon transform. Another impor-

tant relationship, the projection-slice theorem, states the FT of pθ,φ(r) equals the

scene’s 3-D FT evaluated along a line with the same orientation [64]. Analytically,

the projection-slice theorem proves

Pθ,φ(kr) ≡ F [pθ,φ(r)] = F (kr, θ, φ). (5.23)

This relationship is critical to BPA.

Derivation of 3-D BPA itself begins by recognizing even though the output data

f(x, y, z) is usually desired in cartesian coordinates, the available spatial frequency

data is collected in the (kr, θb, φb) coordinate system. Modification of (5.21) to reflect
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this fact results in

f(x, y, z) =

∫ π/2

−π/2

∫ π

−π

∫ ∞

0

F (kr, θb, φb) exp (jkrrb) [kr cos(β/2)]2 cos(φb)dkrdθbdφb.

(5.24)

Note, β can be a function of both θ and φ if the geometric relationship between

the transmitter and receiver changes throughout the CPI. This variability is likely in

WAM-SAR data collections (e.g., Sec. 8.3.1). Using (5.23), (5.24) becomes

f(x, y, z) =

∫ π/2

−π/2

∫ π

−π

∫ ∞

0

Pθb,φb
(kr) exp (jkrrb) [kr cos(β/2)]2 cos(φb)dkrdθbdφb.

(5.25)

Since kr > 0 (there is no “negative” frequency data), the inner integral of (5.25) is

recognizable as the 1-D IFT of a function

Qθb,φb
(kr) = [kr cos(β/2)]2 cos(φb)Pθb,φb

(kr), (5.26)

evaluated at rb. The term [kr cos(β/2)]2 cos(φb) is the “back-projection filter” since it

can be interpreted as the transfer function of a range profile filter. Defining qθb,φb
(r)

as the IFT of Qθb,φb
(kr) allows (5.25) to be rewritten as

f(x, y, z) =

∫ π/2

−π/2

∫ π

−π

qθb,φb
(rb)dθbdφb. (5.27)

Equation (5.27) constitutes the 3-D far-field bistatic back-projection approach to

SAR/ISAR image formation. Implementation of (5.27) can be accomplished in a

few simple steps:

1. Declare a matrix of zeros f(x, y, z) where each element corresponds to a single

voxel.

2. Obtain Pθb,φb
(kr)= F [pθb,φb

(r)] for a given CPI pulse either directly (for an ISAR

system) or via the FT (for a SAR system).

3. Multiply Pθb,φb
(kr) by [kr cos(β/2)]2 cos(φb) to obtain Qθb,φb

(kr).

121



4. Take the IFT of Qθb,φb
(kr) (usually with zero-padding) to obtain qθb,φb

(r).

5. Calculate the rb value for each voxel.

6. Using a 1-D interpolator, calculate the value of qθb,φb
(r) for each voxel based on

its rb value.

7. Multiply the interpolated values by exp[−j min(kr)rb].

8. Add the resulting voxel values to f(x, y, z).

9. Repeat steps 2-8 for each CPI pulse.

The Fourier domain multiplication in step 2 filters the data to account for the relative

weight of a given sample based on the volume it occupies in the spatial frequency

domain [69]. The act of calculating rb values in step 5 is called “back-projection”

since it has the effect of spreading the 1-D data collected by a single CPI pulse across

the entire image domain. Step 7 corrects for the fact that the IFFT in step 4 is

a low-pass filter. Ensuring the individual back-projected filtered range profiles add

coherently requires restoring them to the appropriate frequency. The function min(·)
takes the minimum value of its argument. If desired, temporal windows for sidelobe

control may be applied to the frequency domain data in step 2.

The proceeding development can be reduced to the 2-D imaging scenario by

choosing φb = 0 and performing the multiplication in step 2 using kr cos(β/2). If the

bistatic angle β is constant throughout the CPI, the cos(β/2) term simply acts as a

constant over the entire image and may be ignored since most SAR/ISAR images are

normalized prior to display. This observation further simplifies the back-projection

filter, resulting in a value of kr, the value normally reported in the literature [22, 39,

65,99].

Equation (5.27) also inherently assumes the differential terms dθb and dφb are

constant throughout the data collection. While this fact is usually true for ISAR

data, it may not be true for a wide-angle SAR collection. In this case, the imaging

algorithm may be modified to multiply each filtered range profile qθb,φb
(rb) by the
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instantaneous differential dθbdφb, calculated using flight path data from the transmis-

sion and reception platforms.

While BPA corrects many issues associated with PFA (and can also be general-

ized to the near-field scenario as demonstrated in Section 5.5.3), the implementation

of BPA comes at the substantially higher computation cost of O(N5) due to the need

to explicitly determine the contributions to each voxel from each CPI pulse. However,

recent developments have yielded a modified BPA form with a computation complex-

ity of O(N3 log2 N), identical to the PFA algorithm [14,126,140]. This simplification

results from a hierarchical decomposition of the actual back-projection step and is

often called “fast” back-projection.

5.3 Bistatic Resolution Criteria

In addition to motivating Fourier transform-based imaging algorithms, the spa-

tial frequency domain paradigm also dictates the expected resolution of a given

SAR/ISAR image. The approach in this section is similar to [108] but achieves differ-

ent results. In this section, the term “resolution” refers to the distance between the

peak and first null of a sinc(x) , sin(πx)/πx function (i.e., half the mainlobe null-

to-null width). This convention defines a -4.0 dB resolution criterion for unwindowed

data.

5.3.1 Resolution. The resolution derivation begins by defining ūr as the

unit vector ūb at the CPI’s midpoint. It points opposite the range direction. The

associated azimuth, elevation, and bistatic angles are θr, φr, and βr respectively.

The vector ūh defines the horizontal cross range direction (defined parallel to the

xy-plane) while ūv defines the vertical cross range direction. Taken together, ūr, ūh,

and ūv define a right-handed cartesian (r, h, v) coordinate system. The vectors ūr

and ūh define the traditional slant plane often to derive traditional 2-D SAR imaging

algorithms [65,108].
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Defining resolution according to a separable 3-D coordinate system inherently

assumes the region containing available spatial frequency data is cubic in shape. In

general, this assumption is accurate for data collections spanning relatively small

sections of the spatial frequency domain (i.e., narrow-angle data), but degrades for

larger SAR/ISAR collections. This degradation is more significant when β is also

changing. In any case, multidimensional image resolutions are approximations and

should be treated as such.

The resolution derivation approach comes from basic Fourier transform princi-

ples stating data extent in one domain determines the data resolution in the other

domain. Using this approach, the spatial frequency data extent in the ūr-direction is

denoted ∆kr and defined by

∆kr = [max(kr) − min(kr)] cos(βr/2), (5.28)

where the functions max(·) and min(·) take the maximum and minimum values of their

respective arguments. In a similar fashion, data extent in the ūh and ūv-directions

(∆kh and ∆kv) can be determined by

∆kh = 2 mean(kr) sin

[

max(θb) − min(θb)

2

]

cos(φr) cos(βr/2) (5.29)

and

∆kv = 2 mean(kr) sin

[

max(φb) − min(φb)

2

]

cos(βr/2), (5.30)

where mean(·) denotes the argument’s mean. A more conservative calculation can be

made using the minimum, instead of the mean, kr values.

Having obtained the spatial frequency spans in the desired coordinate system,

the resolutions in the transform (image) domain are calculated via

δρ =
2π

∆kρ

, (5.31)
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where the variable ρ is replaced by the letter indicating the desired direction (i.e.,

r, h, or v). When determining δr, substituting in the definition of kr gives

δr =
2π

∆kr

=
c

2B cos(βr/2)
, (5.32)

where c is the propagation velocity and B is the waveform bandwidth. This result

matches traditional bistatic range resolution definitions [30,108].

The user often desires resolution information not in the (r, h, v) coordinate sys-

tem but in the (x, y, z) system. Unfortunately, this conversion is not possible using

a simple coordinate transformation but requires an understanding of the SAR/ISAR

collection’s ImPulse Response (IPR).

The IPR of a particular collection geometry is defined as the SAR/ISAR image

obtained from the specified collection geometry when f(x, y, z) = δ(x, y, z). The as-

sociated spatial frequency data is simply F (kx, ky, kz) = 1. Assuming the collection’s

angular extent is relatively small, the shape of the available spatial frequency data

(i.e., the data support region) is roughly cubic. In this case, the collection’s IPR is a

3-D sinc(·) function. The -4.0 dB boundary of such a function is well approximated

by an ellipsoid whose semi-axes (traditionally denoted a, b, and c [145]) are equal to

the values δr/2, δh/2, and δv/2. This ellipsoid is defined analytically as

r2

(δr/2)2
+

h2

(δh/2)2
+

v2

(δv/2)2
= 1. (5.33)

In order to calculate the resolution δρ at an arbitrary orientation (θ, φ), (5.33) must

be converted to polar coordinates using

r =
δρ

2
cos(θ) cos(φ), (5.34)

h =
δρ

2
sin(θ) cos(φ), (5.35)
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and

v =
δρ

2
sin(φ). (5.36)

Making these substitutions and solving for δρ yields

δρ =
δrδhδv

√

δh2δv2 cos2(θ) cos2(φ) + δr2δv2 sin2(θ) cos2(φ) + δr2δh2 sin2(φ)
. (5.37)

Finding δx, δy, and δz requires rotating from the (r, h, v) system back to the (x, y, z)

system. The required (θ, φ) values for each direction are δx : (−θr,−φr), δy : (−θr −
90◦,−φr), and δz : (−θr,−φr − 90◦). Substituting these values into (5.37) gives

δx =
δrδhδv

√

δh2δv2 cos2(θr) cos2(φr) + δr2δv2 sin2(θr) cos2(φr) + δr2δh2 sin2(φr)
, (5.38)

δy =
δrδhδv

√

δh2δv2 sin2(θr) cos2(φr) + δr2δv2 cos2(θr) cos2(φr) + δr2δh2 sin2(φr)
, (5.39)

and

δz =
δrδhδv

√

δh2δv2 cos2(θr) sin2(φr) + δr2δv2 sin2(θr) sin2(φr) + δr2δh2 cos2(φr)
. (5.40)

To better understand the relationship between (δr, δh, δv) and (δx, δy,δz), con-

sider Fig. 5.2. It illustrates the relationship between δr, δv, and δx when θr = 0.

This geometry represents a linear flight path SAR data collection scenario when the

platform velocity is in the ūh = ūy-direction. The vectors ūr and ūh define the slant

plane. Most airborne 2-D SAR systems assume the scene is contained within the

xy-plane, thus while the scene may be processed in the slant plane, it is projected

in the xy-plane using simple trigonometry. This projection causes a degradation of

the range resolution δr, thus while the slant plane image has resolution (δr, δh), the

final xy-plane image has resolution (δx′ = δr/ cos(φr), δy = δh). However, if data is
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δv

Figure 5.2: Relationship between δr, δv and δx when
θr = 0. As δv approaches ∞ (i.e., no vertical resolution),
δx approaches δx′ = δr/ cos(φr).

available in the ūv-direction3, the resulting non-infinite value of δv helps improve δx

according to (5.38).

5.3.2 Resolution Cell Volume. The concept of resolution is widely used

as a SAR/ISAR image metric because it provides a simple numerical method for

predicting SAR/ISAR image quality. Yet as the collection’s angular span increases,

the assumptions built into the resolution calculation lose their validity.

One method of dealing with these inaccuracies was presented in [30] which sug-

gested an alternative metric based on the total 2-D image area occupied the mainlobe

return from a point scatterer. Extending this concept to three dimensions, one can

define the total volume of a resolution cell without needing to assume the available

spatial frequency data is confined to a cube. Unfortunately, deriving such volumes

analytically for an arbitrary collection geometry is challenging.

3This data might be collected using multiple passes of the SAR platform at slightly different
altitudes. Such a collection facilitates the use of technique called multi-pass interferometric SAR [65].
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As an alternative to attempting a full analytical solution, it is possible to eas-

ily calculate Resolution Cell Volume (RCV) numerically. This approach is based on

the IPR function, calculated numerically by assuming F (kr, θb, φb) = 1 and evaluat-

ing (5.27) with the appropriate set of (kr, θb, φb, β) values denoting the data acquired

during the data collection. This understanding leads to the following method for

calculating RCV:

1. Calculate and normalize |f(x, y, z)| via (5.27) assuming F (kr, θb, φb) = 1.

2. Determine the number of |f(x, y, z)| voxels exceeding a desired threshold (e.g.

-4.0 dB).

3. Multiply the number of voxels by the single voxel volume.

The result is the resolution-like RCV metric, encompassing all available data and

independent of orientation angle. The 2-D version of RCV is Resolution Cell Area

(RCA) and is defined relative to a 2-D image plane within the 3-D scene.

If the user desires a quick estimate of -4.0 dB RCV or RCA without resorting

to numerical computation, the IPR’s assumed ellipsoidal shape may be used instead.

Under these conditions the ellipsoid volume formula gives [145]

RCV ≈ π

6
δrδhδv. (5.41)

Estimation of RCA in the 2-D rh-plane uses the ellipse area formula [145]

RCArh ≈ π

4
δrδh. (5.42)

The accuracy of (5.41) and (5.42) are directly related to the values of ∆θ and ∆φ. For

smaller values, the spatial frequency data is nearly rectangular giving highly accurate

RCV/RCA estimates. For larger values, the non-rectangular shape tends to make

RCV and RCA estimates more conservative.
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In the most common 2-D SAR imaging scenario, the user collects 2-D data and

forms 2-D images when φb > 0. In this case, RCA should be calculated in the xy-plane

via

RCAxy ≈ π

4
δxδy. (5.43)

Note, RCArh≥RCAxy. The difference between the two is related to the angular differ-

ence between the orientation of these planes and the eccentricity of the ellipse defined

by δr and δh. If these differences are great enough, the estimate of RCAxy may

become smaller than the true RCAxy value, overestimating SAR/ISAR image quality.

5.4 Validation Using ISAR Data

Previous sections have derived several results including the spatial frequency

domain relationship between monostatic and bistatic data, methods of SAR/ISAR

image formation, and resolution derivations using the spatial frequency perspective.

While some aspects of these derivations appear in the literature, they are not thor-

oughly validated with SAR/ISAR data collections. In this section, these relationships

are validated using actual ISAR data. The data was collected in AFIT’s RCS chamber

and calibrated using the procedures outlined in Chapter IV.

5.4.1 Twin Wires Target. For a general ISAR scene, the differences between

scattering from a monostatic and bistatic collection scenario can be separated into two

categories. First, as derived in Section 5.1.3, the bistatic collection geometry warps

the spatial frequency data, making the target behave as though it were illuminated

using different frequencies. Second, the scattering characteristics of real scenes change

dramatically as a function of illumination angle, illumination frequency, and bistatic

observation angle. These variations are defined by the interactions of the ElectroMag-

netic (EM) waves with the scene elements. In order to validate the bistatic collection

geometry effects, the scene/target must be free of the second category of scattering

effects.
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A scene composed of independent ideal point scatterers has the desired proper-

ties. By definition, point scatterers illuminated by a given EM wave reflect that wave

in an axially symmetric pattern, giving the same response to an observer located at

any orientation angle. Such scatterers are termed independent if there are no inter-

actions between a collection of such scatterers. For a scene consisting of a collection

of M independent ideal point scatterers, the image plane f(x, y, z) is given by

f(x, y, z) =
M−1
∑

m=0

Amδ(x − xm, y − ym, z − zm), (5.44)

where the mth scatterer has a complex amplitude Am and is located at (xm, ym, zm).

Using the sifting property, the spatial frequency domain representation for a collection

of M point scatterers is

F (kx, ky, kz) =
M−1
∑

m=0

exp [−j (kxxm + kyym + kzzm)] . (5.45)

According to (5.6), the frequency domain effects of a bistatic collection geometry

may be verified, without loss of generality, by examining the 2-D case. A target

consisting of two vertical wires, illuminated using Vertical transmit / Vertical receive

(VV) polarization, can be approximated as two independent ideal point scatterers of

equal amplitudes Am as long as the wire diameter is much less than the illumination

wavelength. Placing such wires at locations (±0.05, 0, 0) allows (5.45) to be rewritten

as

F (kx, ky) = Am exp

(

j
kx

20

)

+ Am exp

(

−j
kx

20

)

. (5.46)

Using Euler’s relationship, exp(jθ) = cos(θ) + j sin(θ), gives

F (kx, ky) = 2A cos

(

kx

20

)

. (5.47)
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Table 5.1: ISAR data collection parameters: twin wires target.
Type f , GHz N θTX, deg θRX, deg θb, deg β, deg P

Monostatic 6-18 101 180-270 180-270 180-270 0 181
Fixed Bistatic 6-18 101 90-180 180-270 135-225 90 181

Variable Bistatic 6-18 101 180 225-315 202.5-247.5 45-135 181

When kx = 10π(2m + 1),

|F (kx, ky)| = 2|A| cos

[

π(2m + 1)

2

]

= 0, (5.48)

for all integers m.

Interrogation of the twin wires ISAR target was performed using three inde-

pendent data collections. The collection parameters are presented in Tab. 5.1. The

first collection geometry was monostatic, rotating the target to collect data over the

range 180◦ ≤ θb ≤ 270◦. The second collection geometry used a fixed bistatic angle

of β = 90◦, rotating the target to achieve 135◦ ≤ θb ≤ 225◦. The final collection

used a variable bistatic geometry, fixing both the target and transmit antenna while

moving the receive antenna during the collection, resulting in 45◦ ≤ β ≤ 135◦ and

202.5◦ ≤ θb ≤ 247.5◦.

5.4.2 Spatial Frequency Data Representation. Using the data collection

outlined in Sec. 5.4.1, it is possible to validate the spatial frequency domain relation-

ship between monostatic and bistatic data (Sec. 5.1.3). Figures 5.3-5.5 present this

comparison. Each subfigure is plotted on a normalized 40.0 dB dynamic range. Sub-

figure (a) (for each figure) shows the magnitude of the raw N×P data matrix for each

collection geometry (i.e., |F (θb, f)|). While each of these subfigures shows a series of

peaks (dark regions) and nulls (white lines), the individual collection geometries have

warped these features in different ways. At first glance these collections would not

appear to represent the same ISAR scene.
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Figure 5.3: Magnitude of full monostatic ISAR dataset for
twin vertical wires target (40.0 dB dynamic range). Subfig-
ure (a) shows the raw 2-D data matrix. Subfigure (b) shows
this data mapped onto the spatial frequency plane.
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(b) Spatial frequency data magnitude

Figure 5.4: Magnitude of full bistatic (β = 90◦) ISAR dataset
for twin vertical wires target (40.0 dB log scale). Subfigure (a)
shows the raw 2-D data matrix. Subfigure (b) shows this data
mapped onto the spatial frequency plane.
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Figure 5.5: Magnitude of full bistatic (45◦ ≤ β ≤ 135◦) ISAR
dataset for twin vertical wires target (40.0 dB log scale). Sub-
figure (a) shows the raw 2-D data matrix. Subfigure (b) shows
this data mapped onto the spatial frequency plane.
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Subfigure (b) of Figs. 5.3-5.5 shows the same data transferred the spatial fre-

quency domain. The original |F (θb, f)| data has been mapped to

|F (kx, ky)| = |F (kr cos(β/2) cos(θb), kr cos(β/2) sin(θb)|. (5.49)

In the spatial frequency domain, is it obvious that all three collections are merely

different segments of the same |F (kx, ky)| function specified by (5.47). The nulls

appear at the same kx values in all three collections. According to (5.48), the tenth

null counting backwards from kx = 0 (m = −10) should appear at

kx = 10π[2(−10) + 1] ≈ −600. (5.50)

This null may be observed in Figs. 5.3(b) and 5.5(b). Even though the same number

of data samples were available for each collection, the dimensions of the frequency

domain data differ significantly. The monostatic collection occupies the largest area

and should therefore have the best resolution, while the fixed bistatic collection has

a smaller area yielding degraded resolution.

Using the spatial frequency domain mapping, it is also possible to determine

which (kx, ky) pairs were sampled by all three collections. The portion of θb common

to all collections is 202.5◦ ≤ θb ≤ 225◦. For each θb value in this range, the maximum

common kr is determined by the collection with the largest β and the minimum

common kr value is determined by the collection with the smallest β. Using this

information, the data from Figs. 5.3-5.5 was trimmed to produce Figs. 5.6-5.8.

Subfigure (a) of Figs. 5.6-5.8 shows the union of the available raw data. Each

block shows the same number of nulls, but represents a different segment of the original

data collection. The differing sizes of the raw data blocks relate to the eventual sample

density in the spatial frequency domain and are therefore inversely proportional to

the maximum alias-free scene dimensions. Subfigure (b) appears virtually identical

in all three figures, indicating ISAR images produced from this data should also be
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(b) Spatial frequency data magnitude

Figure 5.6: Magnitude of truncated monostatic ISAR dataset
for twin vertical wires target (40.0 dB log scale). Bistatic scaling
term used to remove data not common to all three collections.
Subfigure (a) shows the raw 2-D data matrix. Subfigure (b)
shows this data mapped onto the spatial frequency plane.

136



140 150 160 170 180 190 200 210 220

8

10

12

14

16

18

−40

−35

−30

−25

−20

−15

−10

−5

0

θb, deg

F
re

q
u
en

cy
,
G

H
z

(a) Raw data magnitude (β = 90◦)

−800 −600 −400 −200 0 200 400 600 800
−800

−600

−400

−200

0

200

400

600

800

−40

−35

−30

−25

−20

−15

−10

−5

0

kx, rad/m

k
y
,
ra

d
/
m

(b) Spatial frequency data magnitude

Figure 5.7: Magnitude of truncated bistatic (β = 90◦) ISAR
dataset for twin vertical wires target (40.0 dB log scale). Bistatic
scaling term used to remove data not common to all three col-
lections. Subfigure (a) shows the raw 2-D data matrix. Sub-
figure (b) shows this data mapped onto the spatial frequency
plane. 137
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Figure 5.8: Magnitude of truncated bistatic (45◦ ≤ β ≤ 135◦)
ISAR dataset for twin vertical wires target (40.0 dB log scale).
Bistatic scaling term used to remove data not common to all
three collections. Subfigure (a) shows the raw 2-D data matrix.
Subfigure (b) shows this data mapped onto the spatial frequency
plane. 138



very similar, despite the fact that the data was obtained using drastically different

collection geometries.

5.4.3 ISAR Images. Using the BPA algorithm presented in Sec. 5.2.2,

the complex In-phase and Quadrature (I/Q) sampled data from Figs. 5.3-5.8 was

processed into ISAR images. Since the data was collected in a 2-D geometry, the

resulting images are processed using the 2-D version of BPA with the back-projection

filter equal to kr cos(β). These images are shown in Figs. 5.9-5.11. Subfigure (a)

in each of these figures illustrates the images formed from the data in Figs. 5.3-5.5

(the full data sets) while subfigure (b) in each figure was made from the data in

Figs. 5.6-5.8 (data set unions).

The resolution and RCA calculations (Section 5.3) for each image are presented

in Tab. 5.2. The first two columns define the basic collection geometry and give the

figure numbers of the respective images. The second three columns give the specific

collection parameters which define resolution. The next two columns contain the

predicted resolutions in both the rh-plane (the data collection plane) and the xy-

plane (the image plane). Since the radar is in the image region plane (i.e., φr = 0),

these two planes differ only by a rotation in azimuth. The next three columns give

the estimated RCA values in the rh and xy-planes followed by the true (numerically

determined) -4.0 dB RCA value. The final column contains the ratio of RCArh to

RCA illustrating how accuracy of the RCArh estimate is linked to ∆θb.

The full monostatic image, Fig. 5.9(a), shows two well focused point scatter-

ers at the appropriate (±0.05, 0) locations. The bowtie-like shape of each scatterer is

consistent with that predicted by [132]. From the rotational property of Fourier trans-

forms, the presence of the associated spatial frequency data in quadrant 3 (Fig. 5.3(b))

indicates the illumination came from the same quadrant in the image domain.

Figure 5.9(a) also reveals that while the scene is well approximated as a col-

lection of independent, ideal point scatterers, the true scattering relationships are

somewhat more complex. This fact is illustrated by the light gray arc above and to
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(a) Full image

(b) Truncated image

Figure 5.9: Monostatic ISAR images for twin vertical wires
target (30.0 dB log scale). Subfigure (a) shows full dataset image
(data from Fig. 5.3). Subfigure (b) shows truncated dataset
image (data from Fig. 5.6).
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(a) Full image (β = 90◦)

(b) Truncated image

Figure 5.10: Bistatic (β = 90◦) ISAR images for twin vertical wires
target (30.0 dB log scale). Subfigure (a) shows full dataset image (data
from Fig. 5.4). Subfigure (b) shows truncated dataset image (data from
Fig. 5.7).
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(a) Full image (45◦ ≤ β ≤ 135◦)

(b) Truncated image

Figure 5.11: Bistatic (45◦ ≤ β ≤ 135◦) ISAR images for twin vertical
wires target (30.0 dB log scale). Subfigure (a) shows full dataset image
(data from Fig. 5.5). Subfigure (b) shows truncated dataset image
(data from Fig. 5.8).
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Table 5.2: ISAR resolution predictions: twin wires target. Resolutions calculated
using equations in Sec. 5.3.1. RCA estimates (RCArh, RCAxy) calculated using (5.42)
and (5.43). True -4.0 dB RCA is calculated using the procedure outlined in Sec. 5.3.2.
The entry “var” denotes various values depending on collection geometry. The bottom
row contains information common to Figs. 5.9(b), 5.10(b), and 5.11(b).

Angles, deg Resolutions, cm Est. & True, cm2

Fig.
θr βr ∆θb (δr, δh) (δx, δy) RCArh RCAxy RCA

RCArh

RCA

5.9(a) 225 0 90 (1.25, 0.88) (1.02, 1.02) 0.87 0.82 0.81 1.07
5.10(a) 180 90 90 (1.77, 1.25) (1.77, 1.25) 1.74 1.74 1.62 1.07
5.11(a) 225 90 45 (1.77, 2.31) (1.99, 1.99) 3.21 3.10 3.15 1.02

var 213.75 var 22.5 (2.23, 4.11) (2.52, 3.11) 7.19 6.17 7.15 1.01

the left of the right-hand scatterer. This arc is the result of scatterer interactions

and is caused by radar energy which first strikes one scatterer and then the other

before returning to the antenna. In this case, the radar energy travels an additional

10 cm (the distance between the scatterers), leading to an apparent additional range

of 10/2 = 5 cm. These interactions manifest themselves as low-level returns at a

radius of 5 cm and an angle 180◦ away from the monostatic radar location.

The monostatic image resolutions in the data collection plane (δr, δh) predict

superior performance in the horizontal cross-range direction ūh compared to the range

direction ūr. However, due to θr, the resolutions in the ūx and ūy-directions are

equal. The RCArh estimate is somewhat conservative due to the large ∆θb value

(RCArh/RCA = 1.07). The RCAxy value is nearly identical to the true RCA value.

Figure 5.10(a) shows the image obtained from the fixed bistatic collection. The

overall shape of the scatterers is essentially the same as the monostatic case, but the

change in θr from 225◦ to 180◦ has also rotated the responses from each scatterer. The

scatterer interaction effects seen in Fig. 5.9(a) are not visible. This absence results,

since scatterer interactions are not independent of collection geometry. Resolutions in

the data collection plane are a factor of cos(β/2) worse than the monostatic collection

case, leading to the larger scatterer images. Since θr = 180◦, δr = δx and δh = δy

leading to equal (and somewhat conservative) RCA estimates RCArh and RCAxy.
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Figure 5.11(a) illustrates the image from the variable bistatic collection. Again,

the variation in θr has caused a rotation in the scatterers. However, the sidelobe re-

sponse appears less regular. This irregularity is caused by the variation in β, leading

to the irregularly shaped spatial frequency data in Fig. 5.5(b). Despite this irregular-

ity, the sidelobe levels are significantly lower than those obtained using the standard

back-projection filter kr. Unlike the previous images, Fig. 5.11(a) has better range

resolution than cross-range resolution due to the ∆θb reduction (only the RX antenna

is moving). The reduction in ∆θb also increases the accuracy of the RCArh estimate

but pushes the RCAxy value below the true RCA measure, slightly overestimating the

resulting image quality.

Subfigure (b) in Figs. 5.9-5.11 shows the ISAR images obtained using the data

in Figs. 5.6-5.8, respectively. As expected, despite significant variations in collection

geometry, the resulting ISAR images are virtually identical. The scatterer images are

in the same location, have the same orientation, and same resolutions. Some minor

differences do appear in the image sidelobes, caused by different scatterer interactions

and independent noise realizations in the each of the three collections. Since the

spatial frequency domain extent of the data union is less than any of the individual

collections, the image domain resolutions are also worse. The small ∆θb value makes

RCArh/RCA ≈ 1 but pushes RCAxy even further below the true value.

Figures 5.12 and 5.13 illustrate the minimal differences between Figs. 5.9(b),

5.10(b), and 5.11(b). Figure 5.12(a) shows the magnitude of the pixel-by-pixel differ-

ences between Fig. 5.9(b) (the monostatic image) and Fig. 5.10(b) (the fixed bistatic

angle image). Over most of the image, the differences are quite small, indicating good

agreement. Figure 5.12(b) shows only those pixels with differences of 10.0 dB or more.

As expected, only a few pixels in the sidelobe regions exhibit significant differences.

The worst-case difference is roughly 15.0 dB. These differences all occur in the upper

right-hand quadrant. This quadrant contains monostatic multipath effects, which are

expected to differ from bistatic multipath. Figure 5.13 compares the monostatic case

(Fig. 5.9(b)) to the variable bistatic case (Fig. 5.11(b)). As in the fixed bistatic case,
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the variable case shows very little difference across the majority of the image. Again,

differences show up in the sidelobe region dominated by monostatic multipath.

Figure 5.14 demonstrates the utility of using a back-projection filter which takes

the bistatic angle into account. Subfigure (a) is simply of copy of Fig. 5.11(a), re-

peated for convenience. It made use of the full kr cos(β/2) filter. Subfigure (b) was

made using the traditional kr value. While the overall resolution is essentially the

same, the sidelobes in subfigure (b) are significantly worse, demonstrating the utility

of the new back-projection filter. In total, the images throughout this section serve

to validate the spatial frequency paradigm and far-field bistatic back-projection algo-

rithm. The remainder of the chapter extends this approach to incorporate near-field

effect corrections (i.e., RM) as well as warped image planes.

5.5 Near-Field SAR/ISAR Image Formation

Up to this point, this document has used the far-field approximation, assuming

all transmitted/received waveforms are uniform plane waves of infinite extent. This

assumption contains three important components, each degrading SAR/ISAR image

quality when they become invalid. These assumptions are:

1. The phase of the field is constant over a plane whose normal is defined by the

wave propagation direction.

2. The amplitude is not a function of range since the plane wave is theoretically

of infinite extent and therefore does not expand as it propagates.

3. The amplitude is uniform over this entire planar surface at a given range.

In practice, it is not possible to generate a uniform plane wave. However, when the

target region is sufficiently small compared to the range of the transmitter/receiver,

the effects of these assumptions are small enough to be ignored and the target is

therefore assumed to be in the “far-field”. These assumptions are identical to those

used to derive the quiet zone (Chapter IV). Removing them allows imaging of targets

extending beyond the traditional quiet zone boundaries.
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(a) All pixel difference values.
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(b) Pixel differences > 10.0 dB.

Figure 5.12: Magnitude of pixel differences (30.0 dB dynamic range)
between Fig. 5.9(b) (monostatic collection geometry) and Fig. 5.10(b)
(fixed bistatic collection geometry). The observed differences are due
primarily to multipath effects and are therefore not problematic.
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(b) Pixel differences > 10.0 dB.

Figure 5.13: Magnitude of pixel differences (30.0 dB dynamic range)
between Fig. 5.9(b) (monostatic collection geometry) and Fig. 5.11(b)
(variable bistatic collection geometry). The observed differences are
due primarily to multipath effects and are therefore not problematic.
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(a) New filter kr cos(β/2). Image copied from Fig. 5.11(a) for convenience.

(b) Traditional filter kr.

Figure 5.14: New and traditional back-projection filter comparison
(30.0 dB dynamic range). Use of the new filter causes a reduction in
sidelobe levels.
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5.5.1 Radiative Near-Field Region. Traditionally, determination of the

radar-to-target range required to place the target in the far-field has been based

on the first assumption since it is usually the most restrictive. If the antenna is small

compared to the maximum target width W (i.e., the scene’s cross range extent) the

range rc from the antenna phase center to the scene center is related to the maximum

allowable phase deviation φmax across the EM wave and is given by (4.15) [72]

rc =
πW 2

4λφmax

, (5.51)

where λ is the illumination wavelength. The far-field criterion is usually derived by

limiting the allowable phase deviation to π/8 radians, (4.16)

rc ≥
2W 2

λ
. (5.52)

In practice, certain complex scattering objects require a distance of more than five

times the standard far-field criteria to give accurate imaging results [72].

Assuming the scene is located many wavelengths from the finite transmission/re-

ception antennas (i.e., r ≫ λ) the locus of points with equal phases form a spherical

shell. This spherical shape is a direct consequence of the uniform EM wave propaga-

tion velocity, dictating that points at equal ranges also share equal phases. Thus, the

region

λ ≪ r <
2∆h2

λ
, (5.53)

is defined as the radiative near-field where the r is large enough that radiation fields

dominate (as opposed to induction or quasi-static fields [59]), but the target region is

large enough to require accounting for the spherical curvature of the EM waves. Even

for wide-angle SAR/ISAR collection scenarios, the target is almost always contained

in the radiative zone.

The literature contains several algorithms addressing SAR/ISAR imaging in

the radiative near-field scenario. One of the earliest discusses removal of the first as-
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sumption in the 2-D monstatic/bistatic scenario [16]. Another paper uses a 3-D sce-

nario, but only addresses the first two assumptions and limits itself to the monostatic

case [48]. In [22], all three far-field assumptions are addressed, but in a 2-D geome-

try using a tomographic approach. This chapter uses the most generic 3-D bistatic

geometry, including corrections for all three far-field assumptions. Note, while all of

these approaches attempt to localize radar echoes from near-field sources, this is not

the same as using near-field radar signatures to predict far-field signatures. Various

techniques to address the near-field to far-field signature problem are reviewed in [75].

5.5.2 Near-Field Range Profiles. Removing the three far-field assumption

components allows the expression for the far-field range profile pθ,φ(r) from (5.22) to

be rewritten in the radiative near-field pn
θ,φ(r) as

pn
θ,φ(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ATX(θ, φ)ARX(θ, φ)
|ρ̄TX|

|ρ̄TX − ρ̄|
|ρ̄RX|

|ρ̄RX − ρ̄|f(x, y, z)δ(rn
b −r)dxdydz.

(5.54)

The new terms in (5.54) are addressed individually.

Amplitude terms ATX(θ, φ) and ARX(θ, φ) in (5.54) denote the antenna gain

patterns for the transmission and reception platforms, respectively. They act as am-

plitude weights, scaling the overall scene f(x, y, z). During the SAR/ISAR collection,

the antenna patterns themselves are assumed constant, but due to changes in position

and orientation of the radar platforms, the actual gains seen by a specific voxel loca-

tion may change for each CPI pulse. The inclusion of these terms removes the third

far-field assumption. Note (5.54) assumes ATX(θ, φ) and ARX(θ, φ) are non-dispersive,

giving the same gain pattern for all waveform frequencies.

The vectors ρ̄ = [x, y, z]T, ρ̄TX= [xTX, yTX, zTX]T, and ρ̄RX= [xRX, yRX, zRX]T

are cartesian vectors pointing from the origin to the locations of a specific voxel, the

transmitter, and the receiver, respectively. The two ratio terms in (5.54) account for

the reduction of EM wave amplitude as a function of range (proportional to 1/r [59])
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and are normalized to the coordinate system origin. These terms account for the

second far-field assumption.

The final difference between (5.54) and its far-field equivalent (5.22) concerns

the replacement of the far-field range rb with the near-field (i.e., “true”) range rn
b

rn
b =

1

2
(rn

TX + rn
RX), (5.55)

where

rn
TX = |ρ̄TX − ρ̄| − |ρ̄| (5.56)

and

rn
RX = |ρ̄RX − ρ̄| − |ρ̄|. (5.57)

Inclusion of rn
b accounts for the first, and most important, of the far-field assumptions,

modeling the effects of wavefront curvature.

5.5.3 Modification of BPA for Near-Field Imaging. Incorporation of near-

field corrections into BPA is relatively simple and computationally inexpensive since

BPA processes individual range profiles directly in the image domain. This rela-

tive ease stands in sharp contrast to the non-tomographic RM correction methods

reviewed in Sec. 2.4.1 where only partial RM correction demanded substantial algo-

rithm modifications. The algorithm begins with the same four steps as far-field BPA.

The superscript n denotes data collected in the radiative near-field.

1. Declare a matrix of zeros f(x, y, z) where each element corresponds to a single

voxel.

2. Obtain P n
θb,φb

(kr)= F [pn
θb,φb

(r)] for a given CPI pulse either directly (for an ISAR

system) or via the FT (for a SAR system).

3. Multiply P n
θb,φb

(kr) by [kr cos(β/2)]2 cos(φb) to obtain Qn
θb,φb

(kr).

4. Take the IFT of Qn
θb,φb

(kr) (usually with zero-padding) to obtain qn
θb,φb

(r).
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The function qn
θb,φb

(r) represents the filtered version of the near-field range profile

pn
θb,φb

(r). The δ-function in (5.54) ensures the value of pn
θb,φb

(r) (and therefore qn
θb,φb

(r))

at a given r value is only a function of scene elements at the same r value. Further-

more, since the terms |ρ̄TX|/|ρ̄TX− ρ̄| and |ρ̄RX|/|ρ̄RX− ρ̄| are constant as a function of

r, they can be pulled through the integrals in (5.54) allowing the second component

of the far-field assumption to be corrected via division by these terms. This division

creates an amplitude corrected function

sn
θb,φb

(r) =
|ρ̄TX − ρ̄|
|ρ̄TX|

|ρ̄RX − ρ̄|
|ρ̄RX|

qn
θb,φb

(r). (5.58)

Using this new function, the algorithm proceeds by calculating the near-field range

rn
b to each voxel and then using a 1-D interpolator to estimate sn

θb,φb
(r) at each

value, back-projecting the scene over an ellipsoid and correcting for the first far-field

assumption. The back-projection operation results in an estimate of the function

ATXARXf(x, y, z) from a single CPI pulse. Recovering an estimate of f(x, y, z) en-

tails dividing these back-projected results by ATXARX, correcting for the third and

final far-field assumption component. These actions allow the remaining steps of the

near-field BPA to be written as

5) Obtain sn
θb,φb

(r) from qn
θb,φb

(r) using (5.58).

6) Calculate the rn
b value for each voxel in the scene f(x, y, z) using (5.55).

7) Using a 1-D interpolator, calculate the value of sn
θb,φb

for each voxel based on its

rn
b value.

8) Divide the interpolation results by ATXARX.

9) Multiply the interpolated values by exp[−j min(kr)rb].

10) Add the resulting voxel values to f(x, y, z).

11) Repeat steps 2-10 for each CPI pulse.

The additional computation burden carried by near-field BPA is relatively mi-

nor. The range amplitude correction in step 5 can be calculated once for the entire
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CPI. The back-projection over ellipses instead of planes (step 7) simply involves tak-

ing true vector magnitudes instead of using the trigonometric functions in (5.15). The

most expensive operation is the correction for the antenna pattern (step 8) since the

antenna pattern mapping to the xyz image domain changes for each pulse. None-the-

less, this operation does not change the overall computational complexity, it simply

adds additional overhead to the existing O(N5) algorithm.

The reader may note, the derivation of far-field BPA made use of the projection-

slice theorem to relate the spatial frequency data obtained by each CPI pulse to the

image domain. The projection-slice theorem itself assumes planar wavefronts. This

observation seems to invalidate the near-field BPA approach. However, the problem is

not with the far-field nature of the projection-slice theorem, but the assumption that

the near-field data represents spatial frequency domain samples. Since each sample

in the spatial frequency domain is defined to represent the response of the scene to a

single frequency at a single orientation angle, the near-field data is not pure spatial

frequency domain data. What is important, is that by back-projecting the range

profiles over ellipsoids, the reflected radar energy is placed at the “true” range in the

SAR/ISAR image, allowing the returns from near-field scatterers to add coherently

despite wavefront curvature effects.

The near-field amplitude corrections as well as the back-projection filter use

an “inverse filter” approach. This inversion process amplifies not only the scene

data, but the noise as well. For a small Signal-to-Noise Ratio (SNR) (as occurs

outside the nominal antenna beamwidth), the noise amplification effects of inverse

filter application may actually degrade image quality. To counteract this effect, the

user may use either a pseudo-inverse filter which places a fixed limit on the gain of

the inversion process, or a Wiener filter which uses SNR data to balance amplitude

correction and noise minimization [64].

Finally, it is important to recognize a couple of inaccuracies in the near-field

BPA algorithm caused by wavefront curvature effects. First, wavefront curvature

153



Table 5.3: Near-Field ISAR data collection parameters. Data from
“pillars” target consists of 10 independent collections using the param-
eters below, each at slightly different elevation angles.

Target Type f , GHz N θb, deg β, deg P
Bed-of-Nails Monostatic 12-18 201 135-225 0 451
Bed-of-Nails Bistatic 12-18 201 88.5-178.5 93 451

Pyramid Monostatic 12-18 101 97-180 0 141
Pyramid Bistatic 12-18 101 85-126.5 107 141
Pillars Monostatic 12-18 101 0-60 0 121

affects the differential volume swept out by the total data collection for each voxel,

causing slight spatial variability in the ideal back-projection filter. Second, the IPR

function (and therefore the associated image resolution) becomes spatially varying.

In practice, the variations in the ideal filter and IPR functions are quite minor and

may be safely ignored.

5.6 Near-Field 2-D/3-D ISAR Imagery

A series of 2-D and 3-D ISAR data sets were collected to validate the near-

field imaging algorithms. This section presents the results of each experiment. Data

collection parameters are listed in Tab. 5.3.

5.6.1 Bed-of-Nails Target. To test the effectiveness of near-field BPA, a

large rectangular “bed-of-nails” target was constructed consisting of eleven rows with

three vertical wires each. The wires were separated by 15.24 cm (6.0 inches) in

each direction. Figure 5.15 contains a target photograph. Illuminated using VV

polarization, the wires approximate a series of independent ideal point scatterers.

Both monostatic and bistatic geometries were used in the data collection (Tab. 5.3).

Determination of the boundary between the near-field and far-field via (5.52)

requires knowledge of the range r between the scene and the antenna phase centers.

For the ISAR chamber, the transmission (and monostatic reception) antenna range

is 8.23 m (27 ft) while the range to the bistatic reception antenna is 2.43 m (8 ft).

Using the less conservative monostatic antenna range, (5.52) gives a maximum cross-
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Figure 5.15: Bed-of-Nails target consisting of 33 vertical wires.

range extent of ∆h = 0.26 m using the worst case λ value. However, the target has

∆h = 1.524 m clearly placing it within the near-field of the monostatic and bistatic

antennas.

Figure 5.16 shows the far-field BPA and near-field BPA images of the “bed-of-

nails” target under monostatic illumination. Illumination is from the left. Subfig-

ure (a) shows the far-field algorithm image. The scene appears to bend away from

the monostatic antenna due to the wavefront curvature. Also, wires at the top and

bottom edges of the image are defocused due to these same curvature effects. Subfig-

ure (b) illustrates the near-field algorithm image, produced from the same data used

to form subfigure (a). Correcting for wavefront curvature has restored the rectangu-

lar target shape, while the amplitude corrections have ensured roughly uniform point

scatterer amplitudes, independent of spatial location. Scatterers near the image top

and bottom also show higher noise levels since the division by ATXARX amplifies both

target echoes and noise.
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(a) Far-field bed-of-nails image. (b) Near-field bed-of-nails image.

Figure 5.16: Monostatic ISAR Images of the “bed-of-nails” target il-
lustrating the effectiveness of the near-field corrections (30.0 dB dynamic
range).
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The bistatic images of the “bed-of-nails” target are shown in Fig. 5.17. The

transmitter was located at the left, while the receiver was at the top. The far-field

image, subfigure (a), shows both defocusing and amplitude effects. Those scatterers

at the image top are closer to the receive antenna and thus are much stronger than

those at the image bottom. The near-field image, subfigure (b), refocuses all the

scatterers. Notice the images of the three topmost scatterers appear to be rotated at

slightly different angles. These three scatterers are so close to the reception antenna

(< 1.7 m) that they are being imaged from measurably different observation angles.

At this short range, these scatterers are close to being in the reactive (as opposed

to radiative) near-field, where the spherical wave propagation assumption begins to

breakdown.

5.6.2 Pyramid Target. While demonstrating the effects of near-field BPA

corrections, the images in Sec. 5.6.1 used a strictly 2-D geometry, confining both

the radar and the target to the xy-plane. True SAR systems usually collect that

data by flying above the ground plane. This situation makes the collection geometry

inherently 3-D, even if only 2-D images are produced.

Traditional SAR image formation assumes the radar platform traverses a linear

flight path over perfectly flat ground. In this case, the resulting 2-D image is formed

in the slant plane defined by the linear flight path and the scene center [65]. The user

usually desires a final result in the ground plane, representing the scene as it would

appear from an overhead view. A simple trigonometric function makes this correction,

projecting the slant plane image into the ground plane. Figure 5.18 illustrates these

relationships.

True SAR platforms do not fly perfectly linear paths, especially over the long

distances needed to produce high resolution images. This non-linear flight path means

the slant plane definition changes for each CPI pulse, leading to distortions in both the

slant plane and resulting ground plane imagery. These effects can be removed through

a procedure known as out-of-plane correction. The basic idea is to individually project

157



(a) Far-field bed-of-nails image. (b) Near-field bed-of-nails image.

Figure 5.17: Bistatic (β = 93◦) ISAR Images of the “bed-of-nails” target
illustrating the effectiveness of the near-field corrections (30.0 dB dynamic
range).
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Figure 5.18: Data collection plane comparison. Platform flies
a linear flight path into the page. Traditional SAR images are
formed in the slant plane (defined by the flight path and image
center) and then projected into the image plane. This process
assumes the scene is flat, while the true terrain exhibits height
variation. Reprinted from Fig. 2.5.

the spatial frequency domain data from each CPI pulse into the desired slant or ground

plane prior to image formation, resulting in an orthographically correct image [65].

Unfortunately, the out-of-plane correction procedure assumes the imaged terrain is in

the far-field and perfectly planar, making it inappropriate for WAM-SAR.

The planar-terrain assumption leads to an effect known as layover [36, 65]. For

scatterers outside the ground plane (i.e., z 6= 0) the range measured by each CPI

pulse is somewhat different than if the target were in the ground plane. In the typical

airborne SAR scenario, a tall scatterer such as a hill or the top of a building appears

closer to the radar, causing such structures to “lay over” towards the radar in the

resulting imagery. Using the scenario depicted in Fig. 5.18, the amount of layover

(range error) in the image plane may be estimated as

ǫ = z tan(φ), (5.59)

where ǫ denotes layover and z is the height (i.e., z-coordinate) of a given scatterer.
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Previous attempts at eliminating layover have used a series of tie-points rep-

resenting a dense grid known locations to warp SAR images in a post-processing

fashion [36]. Unfortunately, this method require high levels of operator interaction

and computational complexity. However, using the same terrain information, the BPA

allows elimination of layover effects without requiring either operator interaction or

post-processing efforts.

The far-field and layover limitations of the out-of-plane correction procedure

can be eliminated using near-field BPA combined with knowledge of the actual terrain

contours. Unlike traditional PFA, near-field BPA calculates voxel values in parallel,

allowing the user to specify any desired set of voxels. For 2-D SAR image forma-

tion using a 3-D collection geometry, the user simply selects a set of voxels (x, y, z)

forming a 2-D skin covering the terrain. Near-field BPA is then used to estimate

f(x, y, z) for each of these points. By ensuring each voxel has a unique xy-value,

the resulting voxels form an orthographically correct image of the terrain contours.

Ignoring the z-component and viewing the results as a 2-D image projects the vox-

els into the xy-ground plane. Obviously, correcting for the layover effect requires

knowledge of the true terrain profile. This knowledge (the same knowledge used to

define the “tie-points” mentioned above) might come from simply assuming ellipsoidal

Earth curvature, or by incorporating knowledge from an independent source such as

a contour map. In either case, the strength of near-field BPA to address this issue

comes not from an ability to collect this information, but to incorporate it in the

image generation processes without significant algorithm modifications or additional

assumptions.

To illustrate the layover correcting abilities of near-field BPA, a styrofoam pyra-

mid was covered with a series of 25 0.64 cm (0.25 in) diameter ball bearings designed

to approximate 3-D ideal point scatterers. The pyramid’s base was 50 × 50 cm and

had a height of 40 cm. Figure 5.19 contains a target photograph. The target was

illuminated with VV-polarization using the parameters given in Tab. 5.3. Both the

transmission and reception antennas were confined to the xy-plane (i.e., z = 0).
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Figure 5.19: Pyramid target. Ball bearings placed on each of
the four styrofoam blocks.
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Figure 5.20: 3-D target contour map. Built using an interpo-
lation of known target contour points.

A cubic interpolator calculated a 3-D target contour map using knowledge of

the true scatterer locations. The result defined the corresponding z value used for

each (x, y) pixel in the resulting 2-D near-field BPA ISAR image. Fig. 5.20 illustrates

this 3-D contour map.

Figure 5.21 shows the ISAR images resulting from the monostatic collection,

both with and without the contour map corrections. Subfigure (a) contains the near-

field monostatic BPA image assuming z = 0 for all pixels. A slight bowing is visible as

though the pyramid’s top has been pulled towards the lower right hand corner of the

image. This effect is layover. Since the target is above the antenna, the layover occurs

away from the antenna. In traditional SAR imagery, where the antenna is above

the target, the layover direction reverses. Some defocusing of the center (highest)

scatterer is also visible in that the sidelobes are blurred into the mainlobe response.

Subfigure (b) contains the near-field BPA monostatic image when the z-coordinate is

defined by the 3-D skin. Injection of true height information has removed the layover
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effect. Also, the mainlobe and sidelobe responses are clearly delineated, indicating

better focusing of the center scatterer.

The z 6= 0 effects are not severe in the monostatic case due to the relatively

large monostatic antenna range compared to the target height. In the bistatic case

(Fig. 5.22), the effects are more noticeable. Subfigure (a) illustrates the z = 0 near-

field bistatic BPA results. The layover effect is much more dramatic as the top of the

pyramid appears to be pulled towards the image bottom. Also, scatterer amplitude

decreases as a function of height. This decrease results from the antenna pattern’s

amplitude fall-off in the vertical dimension. Traditional SAR processing ignores this

fall-off due to the z = 0 assumption. Subfigure (b) shows the effect of injecting

the z 6= 0 surface into near-field BPA. This action corrects the layover problem and

restores appropriate scatterer amplitudes.

In both the monostatic and bistatic cases, the addition of prior height knowl-

edge has been shown to improve the image quality, removing effects on warped ground

planes. This prior knowledge is increasingly available from outside sources, but is

difficult to incorporate using traditional SAR/ISAR imaging techniques. However,

near-field BPA allows incorporation of this data without any increased computational

complexity. The result is imagery with highly focused scatterers appearing at ortho-

graphically correct locations.

5.6.3 Pillars Target. Due to the inherent limitations of the available ISAR

chamber, pure 3-D ISAR imagery production is challenging. While the target and

bistatic reception antenna can be precisely rotated in the xy-plane, no automated

capability exists to vary the height of either the target or antennas during the data

collection process. To add a rudimentary height variation capability, a series of nine

5 cm thick styrofoam plates were constructed. These plates allow a given target to

be raised in 5 cm increments from the standard z = 0 position to z = 45 cm. The

resulting series of ten independent ISAR collections is then combined using near-field

BPA to produce 3-D imagery. Unfortunately, the act of inserting these styrofoam
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(a) Image w/o contour corrections

(b) Monostatic Image w/contour corrections

Figure 5.21: Monostatic contour map ISAR images (20.0 dB
dynamic range).
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(a) Image w/o contour corrections (β = 107◦)

(b) Image w/ contour corrections

Figure 5.22: Bistatic (β = 107◦) contour map ISAR images
(20.0 dB dynamic range).
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plates requires removing and replacing the target. This procedure leads to subtle,

unknown changes in target position and prevents perfect coherent combination of

the ten independent ISAR collections into a single 3-D ISAR image4. Despite these

limitations, the following results demonstrate the 3-D imaging capabilities of near-field

BPA.

The ISAR target in this section consists of four 0.64 cm (0.25 in) ball bearings

placed on the end of four narrow styrofoam pillars of heights 10, 20, 30, and 40 cm.

The pillars were arrayed around the edges of a 40 cm diameter styrofoam column.

Figure 5.23 is a target photograph. As viewed from this perspective, scatterer height

increases from left to right (the second scatter appears lowest because it is further away

from the camera). The collection parameters are listed in the final row of Tab. 5.3

(pg. 154). Only a monostatic collection was possible because the combined height of

the target and the mount was well outside the bistatic receiver’s vertical beamwidth.

Figure 5.24 demonstrates the effectiveness of 3-D near-field BPA. Figure 5.24 (a)

shows the 2-D image produced when no styrofoam plates were used to raise the target.

The algorithm assumed z = 40 cm, consistent with the tallest (bottom left) scatterer.

Due to the lack of vertical diversity in the ISAR collection, all four scatterers appear

at approximately the same amplitude. However, the sidelobes of the two highest scat-

terers (image bottom) are much better structured than the lowest scatterers (image

top). This difference results from the validity of the height assumption used to form

the image, but is not sufficient to provide a reliable scatterer height estimate.

The ISAR data from all ten collections was combined to produce a 3-D image.

Subfigure (b) is the 2-D z = 40 cm slice of that 3-D image. The addition of vertical

diversity has left the highest scatterer essentially untouched, but significantly reduced

the amplitude of the remaining scatterers. The lowest scatterer is virtually eliminated.

4This problem is also encountered in airborne SAR collections where radar platform locations
cannot be known precisely. These errors can be minimized using various “autofocus” algorithms [28,
65]
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Figure 5.23: Pillars target mounted on ogive pylon. Pillar
heights from left to right are 10, 20, 30, and 40 cm. Several
styrofoam disks, used to vary target elevation, are also visible.
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(a) 2-D Image focused on highest (bottom left) scatterer

(b) 2-D slice of 3-D Image at height of highest (bottom left) scatterer

Figure 5.24: ISAR Images of the pillars target (20.0 dB dy-
namic range). Addition of vertical data diversity allows vertical
filtering.
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Table 5.4: Peak scatterer values for pillars target. The peak
values are listed for the images in Fig. 5.24.

Scatterer Attributes Peak Scatterer Value, dB
Number Location Height, cm 2-D 3-D Predicted

1 top left 10 -0.7 -14.7 -20.5
2 top right 20 -1.5 -6.1 -15.8
3 bottom right 30 0.0 -5.6 -6.1
4 bottom left 40 -0.4 0.0 0.0

Table 5.4 quantifies the observed and predicted vertical filtering performance.

In the 2-D image (Fig. 5.24(a)), the amplitudes are roughly equal. These small varia-

tions could be caused by several effects including noise and target-mount interactions.

When the 2-D slice from the full 3-D image is analyzed (Fig. 5.24(b)), the scatterer

amplitudes decrease dramatically as a function of height.

Given an antenna range of 8.23 m and the vertical data span of 0.5 m, the

total elevation span is 3.1◦. Equations (5.30) and (5.31) allow calculation of the ver-

tical -4.0 dB resolution as δv = δz = 0.165 m. Using an appropriately scaled sinc(·)
function to approximate the vertical point scatterer IPR allows calculation of the

predicted amplitudes in the last column of Tab. 5.4. The predicted and actual 3-D

values for the 30 cm high scatterer are quite accurate, especially when accounting for

scatterer three’s stronger 2-D image response. This fact demonstrates the accuracy

of the resolution prediction. Subsequent scatterer amplitudes continue to fall, but

not as quickly as predicted. This effect is likely related to the subtle target misalign-

ment caused by adding styrofoam plates between collections. These small differences

prevent the near-perfect coherent phasing required to form a sinc-like null structure.

5.7 Summary

This chapter introduced a technique for solving the WAM-SAR data focusing

problem. The relationship between traditional monostatic range measurements and

bistatic measurements in an arbitrary 3-D geometry is first derived. While this result

was not new, the derivation methodology and accompanying validation with measured
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data were. The 3-D bistatic spatial frequency paradigm was used to derive new 3-

D resolution and resolution-like metrics applicable to wide-angle data collected in

arbitrarily oriented coordinate systems. The chapter contains a new back projection

filter capable of accounting for the variable bistatic angles likely to occur in WAM-SAR

data collections. The 2-D traditional BPA was also extended to the 3-D near-field

bistatic case, correcting for RM effects. While specific components of this extension

are present in the literature, they have not been combined and tested with measured

data. Additionally, the use of a tomographic algorithm enabled seamless inclusion

of ground contour data. This technique has not been observed in the literature.

Appendix C includes the Matlabr code used to produce the pyramid target images

(Sec. 5.6.2) since this represents the most likely data collection scenario for WAM-

SAR. While specific SAR and ISAR applications may require additional processing

to perform functions such as autofocusing, speckle reduction, or sidelobe control, the

algorithm presented here forms the core of wide-angle SAR/ISAR processing routines.
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VI. Theory of Anti-Aliasing with Randomized

Stepped-Frequency Waveforms

Having solved the challenge of wide-angle focused Synthetic Aperture Radar

(SAR) image formation with Chapter V’s near-field Back-Projection Algo-

rithm (BPA), focus shifts towards addressing the second Wide-Angle Multistatic SAR

(WAM-SAR) implementation problem, anti-aliasing of focused SAR imagery.

This chapter examines the aliasing problem from a Two-Dimensional (2-D)

monostatic perspective, consistent with the monostatic wide-angle architecture (Sec. 2.1).

As opposed to the hundreds of channels required by the proposed phased-array im-

plementation, the anti-aliasing technique developed here requires only a two-channel

system (one transmit and one receive channel), dramatically simplifying the radar

hardware and processing [143]. Chapter VIII presents anti-aliasing technique applica-

tion to 3-D monostatic/bistatic scenarios needed for full WAM-SAR implementation.

Figure 6.1 (reprinted from Fig. 2.1 for convenience) illustrates a wide-angle

monostatic SAR data collection. It consists of a SAR aircraft traversing a linear flight

path with a velocity magnitude va, transmitting an extremely wide beam normal to

its flight path. The beam illuminates a large ground swath, using range gating to

establish minimum and maximum range values (Rmin and Rmax). From this stripmap

transmit pattern, the user desires the ability to form alias-free SAR images over an

arbitrary ground patch illuminated by the beam while significantly undersampling

the scene along the synthetic aperture.

Most SAR systems use Linear Frequency Modulated (LFM) waveforms due, in

large part, to the ease of their generation and processing [28, 65, 100]. LFM wave-

forms are extremely Doppler tolerant, exhibiting roughly uniform gain over a wide

Doppler frequency range. While this property is very useful in certain applications

(e.g., Moving Target Indication (MTI)), it causes significant challenges in wide-angle

SAR imaging. This chapter introduces a new anti-aliasing technique using contin-

uously transmitted sets of Stepped-Frequency (SF) waveforms. The SF waveform

echoes are digitally sampled and then match-filtered to perform pulse compression.
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Figure 6.1: Anti-aliasing scenario. A single radar platform transmits
an extremely wide beam (∆θ ≈ 90◦) over a large ground swath. Monos-
tatic echoes are received and processed to form a number of small, high
resolution, spotlight mode SAR images in parallel. Reprinted from
Fig. 2.1.
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The integration time (i.e., matched filter length) is determined by the length of the

artificial Pulse Repetition Frequency (PRF) used to encode the continuous transmis-

sion. The SF waveform’s Doppler filtering properties mitigate cross range aliasing

artifacts. Note, the use of Doppler filters for beamforming in space-based MTI radar

was proposed by [120].

The remainder of this chapter is divided into four sections. Section 6.1 charac-

terizes the cross range (Doppler) aliasing problem in terms of antenna theory. The

basic anti-aliasing principle is introduced in Section 6.2. Section 6.3 discusses LFM

waveforms, showing how their ambiguity function permits aliasing to occur. Sec-

tion 6.4 discusses SF waveforms and illustrates how sets of these waveforms can be

used to approximate the desired rectangular data support region. Finally, selection

of subpulse frequency order is reviewed in Section 6.5. This chapter forms the basis

for [89] (with contributions from [87, 88]) which addresses the the anti-aliasing tech-

nique’s theory. Chapter VII validates the theory using a point scatterer simulation.

These simulation results are also contained in [85,87–89].

6.1 Grating Lobe View of Cross Range Aliasing

Although usually derived using a Doppler paradigm (Sec. 2.5.1), the relationship

between PRF and cross range aliasing is perhaps most easily understood from an

array theory perspective [121]. This perspective is depicted in Figure 6.2. The three

dots (labeled A, B, and C) correspond to the locations of three sequential samples

along the synthetic aperture, spaced by uniform distance δu. The points are collinear

indicating a linear SAR flight path. The three solid arrows point in the imaging

target direction. To form a synthetic radar beam in a desired direction, the radar

echoes from this direction must add constructively. This condition occurs when the

total distance traveled by target echoes from each point along the aperture differs

by integer multiples of a wavelength λ. Assuming the scatterer of interest is in the

synthetic antenna’s far-field, the rays connecting the three aperture samples to the
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target are parallel, making an angle θ with respect to a vector normal to the linear

flight path.

The one-way distance traversed between successive synthetic aperture samples

differs by a distance d where

d = δu sin θ. (6.1)

Since radar echoes travel a two-way path, constructive interference angles between

consecutive samples occurs when

d = n
λ

2
, (6.2)

for some integer n. Combining (6.1) and (6.2) allows calculation of the angles θm

corresponding to constructive interference for a synthetic array spaced by uniform

distance δu

sin θm = m
λ

2δu
. (6.3)

For m = 0, θm = 0 and a synthetic beam is formed normal to the SAR flight path.

The m = 0 beam is often referred to as the array main beam (or mainlobe) and

corresponds to the array look direction. Additional beams, referred to as grating

lobes, are formed for all other values of m such that |θm| < 90◦ [121]. Thus, grating

lobes only exist when δu > λ/2 and the synthetic aperture is deemed undersampled.

This condition is common in SAR systems. Targets within these grating lobes are

spatially indistinguishable from targets within the main beam (assuming the antenna

gains are the same) resulting in cross range aliasing. SAR systems usually eliminate

cross range aliasing artifacts by applying an amplitude taper on the transmit/receive

beam (i.e., transmitting a “narrow” beam), placing a spacial filter on the grating

lobes. From the array theory perspective, this amplitude taper is equivalent to an

element pattern e(θ). Such an element pattern destroys wide-angle system utility,

hence this development assumes an extremely wide element pattern indicating a real
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Figure 6.2: Linear antenna array paradigm for SAR image
formation. The three dots (labeled A, B, and C) correspond to
the locations for three sequential samples along the linear syn-
thetic aperture. The three large arrows point to the imaging
target. They are parallel as long as the target is in the synthetic
antenna’s far-field. The variable δu represents the distance be-
tween consecutive aperture samples and d denotes the one-way
distance difference from consecutive synthetic aperture samples
for a far-field target located an angle θ relative to the figure’s
horizontal axis.
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instantaneous beamwidth of up to 180◦

e(θ) =







1 |θ| < 90◦

0 otherwise.
(6.4)

Equation (6.3) would be adequate for characterizing the cross range aliasing

problem if SAR systems only formed target images normal to their flight path. How-

ever, one of the major advantages of wide angle SAR is its large coverage area. Lever-

aging this feature requires main beam steering (i.e., squinting [117]) away from the

broadside direction. In array theory, a phased array antenna is steered by placing

an incremental phase shift on successive antenna elements, effectively introducing a

sequential delay in the returns for a narrowband signal. SAR processing steers its

synthetic beam in the same fashion. Accounting for the effects of this incremental

phase shift, (6.3) can be rewritten as

sin θm = m
λ

2δu
+ sin θ0, (6.5)

where θm is the direction of the mth grating lobe and θ0 corresponds to the mainlobe

direction.

While cross range aliasing artifacts cannot be distinguished spatially, they can

be distinguished through Doppler shift. The distance δu between each Coherent

Processing Interval (CPI) pulse (i.e., element of the synthetic array being formed) is

δu =
va

PRF
, (6.6)

where va is the SAR platform velocity magnitude. Substituting this relationship

into (6.5) yields

sin θm = mPRF
λ

2va

+ sin θ0. (6.7)
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Multiplying through by 2va/λ gives

2va sin θm

λ
= mPRF +

2va sin θ0

λ
. (6.8)

Recall the monostatic Doppler frequency shift fd of a given scatterer is defined by (2.7)

fd =
2vr

λ
, (6.9)

where vr is the relative velocity magnitude between the radar and the scatterer.

Assuming the scatterer is stationary and located in the mth grating lobe, the relative

velocity is simply defined by vr = va sin θm (2.8) and (6.8) can be rewritten as

fdm − fd0
= mPRF, (6.10)

where fdm and fd0
are the Doppler shifts of scatterers in the mth grating lobe and

mainlobe respectively. In words, (6.10) shows the difference in Doppler shift of a

target within the mainlobe and a target within the mth grating lobe is mPRF. This

result indicates for a SAR image of a relatively small scene (i.e., with a small Doppler

frequency spread), cross range aliasing artifacts only arise from scatterers having

Doppler shifts which differ from the scene Doppler shift by integer PRF multiples.

6.2 Anti-Aliasing with Rectangular Data Support Regions

This section outlines a theoretical approach for cross range aliasing artifact

elimination. It begins by demonstrating how the data support region’s shape effects

individual range profile generation. These effects can used to eliminate aliasing arti-

facts from SAR images. The aliasing problem is approached here from an “information

only” perspective, determining which scene information is required to eliminate alias-

ing artifacts without explicitly defining the waveform used to collect that information.
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6.2.1 Range Profile Generation. At a single location along the synthetic

aperture, a SAR system illuminates a ground patch p(t, fd) consisting of M scatterers

at widely varied locations. Assuming the ground patch is composed of ideal point

scatterers, it can be represented by

p(t, fd) =
M−1
∑

m=0

Amδ(t − tm, fd − fdm), (6.11)

where δ(·, ·) is a 2-D delta function and Am, tm, and fdm are the complex amplitude,

time delay, and Doppler shift of the mth scatterer, respectively. The 2-D Fourier

transform of (6.11) is given by

P (f, td) = F [p (t, fd)] , (6.12)

where F denotes the Fourier transform. Note, the dual of t, a time delay, is the

frequency f , and the dual of fd, a Doppler frequency shift, is the time td.

Assuming p(t, fd) is a continuous function of both t and fd, P (f, td) has infinite

extent in both variables. Thus, accurate estimation of p(t, fd) requires knowledge

of P (f, td) over an infinite frequency band and infinite time duration. Since it is

impractical to acquire such information, it is assumed a measurement method exists

to acquire frequency information over a bandwidth B and time information over

a duration τ . With these limitations, the measured estimate of P (f, td), denoted

P̂ (f, td), is given by

P̂ (f, td) = rect

(

f

B

)

rect

(

t

τ

)

P (f, td), (6.13)

where

rect
( x

X

)

=







1, −X
2
≤ x ≤ X

2

0, otherwise.
(6.14)

Offsets due to the carrier frequency (leading to phase shifts in the transform domain)

are ignored as they do not effect the analysis. The product of the two rect functions
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in (6.13) forms a 2-D uniform amplitude rectangular mask in (f, td) space, the extent

of which is termed the data support region.

Using (6.13) and 2-D Fourier processing, the estimate of the scene p̂(t, fd) is

given by

p̂(t, fd) = F−1

[

rect

(

f

B

)

rect

(

td
τ

)

P (f, td)

]

, (6.15)

where F−1 denotes the inverse Fourier transform. Applying the convolution property

and evaluating the inverse Fourier transforms of the two rect functions results in

p̂(t, fd) = [Bτsinc(Bt)sinc(fdτ)] ∗ p(t, fd), (6.16)

where sinc(x) , sin(πx)/πx and ∗ denotes 2-D convolution. The first term on the

right side of (6.16) is a scaled 2-D sinc function and represents the system impulse

response. Its sinc-shape results from the uniform rectangular shape of the B × τ

support region.

To limit the computational workload, when processing the echo from a single

CPI pulse, the SAR system filters the data using a fixed Doppler shift corresponding

to the Doppler shift fdc of the ground patch (i.e., scene) center1. The resulting One-

Dimensional (1-D) range profile p̂(r) is simply a 1-D cut of p̂(t, fd) denoted

p̂(r) = p̂
( c

2
t, fdc

)

, (6.17)

where r = ct/2 denotes range.

6.2.2 Eliminating Cross Range Aliasing Artifacts. Using the definition and

commutative property of convolution, (6.16) can be rewritten as

p̂(t, fd) = Bτ

∫ ∞

−∞

∫ ∞

−∞

p(t′, f ′
d)sinc [B (t′ − t)] sinc[(f ′

d − fd)τ ]dt′df ′
d, (6.18)

1The use of matched filter parameters linked to a specific ground patch location indicates spotlight
mode data processing. spotlight mode processing may be used on SAR data regardless of whether
it was collected using a stripmap or spotlight antenna pointing scheme [100].
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where t′ and f ′
d are introduced as integration variables. To examine the 1-D range

profiles generated by matched filtering, the definition of p(t, fd) (given by (6.11)) is

substituted into (6.18), yielding

p̂(t, fd) = Bτ

∫ ∞

−∞

∫ ∞

−∞

[

M−1
∑

m=0

Amδ(t′ − tm, f ′
d − fdm)

]

· sinc [B (t′ − t)] sinc[(f ′
d − fd)τ ]dt′df ′

d. (6.19)

The integrals can be evaluated using the sifting property of delta functions giving

p̂(t, fd) = Bτ
M−1
∑

m=0

Amsinc[B(tm − t)] sinc[(fdm − fd)τ ]. (6.20)

Setting fd = fdc and converting the time delays to ranges yields the following matched

filtered range profile expression

p̂(r) = Bτ

M−1
∑

m=0

Amsinc[B(rm − r)] sinc[(fdm − fdc)τ ], (6.21)

where rm= ctm/2 is the range to the mth scatterer. Equation (6.21) shows the matched

filter output for a given CPI pulse is simply a sum of appropriately scaled and delayed

sinc[B(rm − r)] functions. The amplitude of each sinc is determined by the mismatch

between the Doppler shift of the mth scatterer fdm and the ground patch center fdc

according to the term sinc[(fdm − fdc)τ ]. When (fdm − fdc) equals a non-zero integer

multiple of 1/τ , sinc[(fdm − fdc)τ ] = 0 and the mth scatterer is effectively filtered out

of range profile p̂(r).

Recall from (6.10) that cross range (i.e., Doppler) aliasing artifacts only appear

at integer PRF multiples. This uniform aliasing artifact spacing can be combined

with the uniformly spaced Doppler filter nulls generated by the sinc[(fdm − fdc)τ ]

term of (6.21) to remove aliasing artifacts. Choosing

PRF =
1

τ
, (6.22)
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achieves this goal, ensuring the Doppler values of cross range aliasing artifacts coincide

with Doppler nulls in the range profile generation process. This precise Doppler null

positioning is the fundamental concept of the cross range aliasing reduction technique.

Since the scene information is collected using a waveform of duration τ , the

PRF = 1/τ requirement of (6.22) implies Continuous Wave (CW) transmitter op-

eration. An artificial PRF is formed on receive by independently matched filtering

the radar echoes with each of the individual duration τ waveforms. Additionally,

claiming PRF = 1/τ filters aliasing artifacts from a given SAR image assumes the

individual region being imaged (not the full scene intercepted by antenna beamwidth,

see Fig. 6.1) has a small Doppler spread. Since the system architecture specifies the

formation of many relatively small spotlight mode images, this assumption is valid.

Simulation results in Chapter VII and Chapter VIII demonstrate this claim.

6.3 Linear Frequency Modulation Waveforms

As discussed previously, most SAR systems use LFM waveforms. Analytically,

an LFM waveform is written

x(t) = rect

(

t

τ

)

exp[2πj(fct + αt2)], (6.23)

where τ is the pulse width, fc is the center frequency and α is the chirp rate.

Assuming radar waveform echoes are processed using matched filtering, the

waveform impulse response is given by the time-frequency auto-correlation function

χ(te, fe). The squared magnitude |χ(te, fe)|2 is called the ambiguity function and is

defined as [63]

|χ (te, fe)|2 =

∣

∣

∣

∣

∫ ∞

−∞

x(t)x∗(t + te) exp (j2πfet) dt

∣

∣

∣

∣

2

, (6.24)

where x(t) is the transmitted waveform, the superscripted ∗ denotes the complex

conjugate, te is the temporal mismatch error, and fe is the frequency (e.g., Doppler)
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Figure 6.3: Central region of the ambiguity diagram for an LFM
waveform (50.0 dB dynamic range). Both Doppler tolerance and range-
Doppler coupling result from the linear ridge in the ambiguity function’s
center.

mismatch error between the matched filter parameters (e.g, the scene center) and the

scatterer. The ambiguity function is an important validation tool since it uses the

actual waveform to calculate the impulse response, not an idealized approximation

of the support region. This approach is used to verify the concepts presented in

Section 6.2.

Figure 6.3 illustrates two LFM waveform properties critical to the aliasing ar-

tifact problem. First, the ambiguity function peak (0.0 dB) persists across a wide

frequency range. This behavior is known as Doppler tolerance and indicates matched

filter output amplitude is essentially constant as a function of filter/scatterer fre-

quency mismatch [116]. While Doppler tolerance is an asset in MTI applications,

where high speed targets exhibit a wide variety of Doppler shifts, it is a liability in
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SAR systems, allowing Doppler shifted aliasing artifacts into the resulting imagery.

The second LFM waveform effect is known as range-Doppler coupling.

The 45◦ slope in the waveform’s ambiguity surface causes this effect. Range-

Doppler coupling dictates while matched filter output amplitude is uniform, mis-

matches in frequency also lead to mismatches in observed delay (i.e., range) [116].

Targets with large Doppler shifts appear at incorrect range values. Range-Doppler

coupling is relatively insignificant for MTI applications which only seek to determine

approximate target location. However, range-Doppler coupling can lead to SAR image

defocusing and is therefore unacceptable for WAM-SAR. Figures 9.8 and 9.9 illustrate

range-Doppler coupling.

6.4 Stepped-Frequency Waveforms

The previous section demonstrated that by setting PRF = 1/τ , it should be

possible to virtually eliminate Doppler aliasing provided one can collect data filling

the rectangular data support region defined by bandwidth B and duration τ . The

measurement tool used to collect this data is a radar waveform. This section presents

one class of waveforms that can be used to fill the data support region, resulting in a

good approximation to the data requirements outlined in Section 6.2.

6.4.1 Background on Stepped-Frequency Waveforms. A Stepped-Frequency

(SF) waveform of bandwidth B and uncompressed duration τ , is built by dividing a

waveform into N equal duration subpulses consisting of a single frequency, uniform

amplitude sinusoid. There are N such frequencies equally spaced across the waveform

bandwidth. The frequencies can be arranged in any desired order. An SF waveform

can be analytically represented as

x(t) =
1√
τ

N−1
∑

n=0

rect

(

t − nτs

τs

)

exp (j2πfnt) , (6.25)
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where fn ∈ {f0, f1, ..., fN−1} is the frequency of the nth subpulse, and τs is the subpulse

duration. The 1/
√

τ constant ensures the SF waveform has unit energy.

A common way of representing SF waveform time-frequency characteristics is

through a grid similar to the one shown in Fig. 6.4 [34, 52]. In this figure, each of

N = 8 subpulses has been assigned a fixed frequency value which it maintains for

τs = τ/8 seconds. These values are noted by the black blocks. Equivalently, the SF

characteristics of Fig. 6.4 can be represented using an N × N time-frequency matrix

K with ones corresponding to filled blocks and zeros elsewhere

K =









































1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0









































. (6.26)

This construction of K is known as a permutation matrix and contains exactly one

non-zero entry in each row and each column. There are N ! unique permutation

matrices for a given value of N [145].

To ensure each SF subpulse samples the scene over its entire designated fre-

quency band of width B/N , the waveform bandwidth B and duration τ are related

by [116]

Bτ = N2. (6.27)

This requirement can be derived by noting B/N is the 4.0 dB width of the Fourier

transform of a τs = τ/N duration pulse. When Bτ < N2, a significant portion of the

energy in a given subpulse extends outside its allotted portion of the total bandwidth.

When Bτ > N2, gaps result in the waveform’s frequency coverage and range aliasing
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occurs. Due to the roughly uniform energy spreading across the subpulses in both

frequency and time, a single SF waveform provides the required data in N of the N2

blocks specified by the data support region. Also note that by dividing through by

N2, (6.27) can also be written as

δf τs = 1, (6.28)

where δf, B/N is the uniform spacing between subpulse frequencies.

Figure 6.5 shows the central region of an SF waveform ambiguity function with

N = 100 subpulses. Subpulse frequency order was chosen at random. Along both the

te = 0 and fe = 0 axes, nulls appear at integer multiples of 1/B and 1/τ , respectively.

However, since only N of N2 blocks in the permutation matrix have been filled, the

overall ambiguity response differs from the desired 2-D |sinc(·)|2 response.
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6.4.2 Combinations of Stepped-Frequency Waveforms. Better approxima-

tion of the desired 2-D |sinc(·)|2 ambiguity function requires generating a waveform

which entirely fills the B × τ support region. While one SF waveform is not suffi-

cient, combining the range profiles generated by multiple SF waveforms produces the

desired effect.

Figure 6.6 illustrates the process used to sample the scene and form the SAR

image. Each block in the CW SAR waveform is a subpulse consisting of a uniform

amplitude single frequency sinusoid. There are N subpulses in each SF waveform and

P SF waveforms in the overall SAR signal. Each of the N frequencies occurs once

within each SF waveform. The received echoes are match-filtered to produce P range

profiles. These range profiles are each treated as the response from a single SF wave-

form in the CPI and are coherently combined by the SAR imaging system to produce

the final image. The remainder of this section shows varying the subpulse frequency

order on a waveform-to-waveform basis achieves the desired impulse response leading

to a |sinc(·)|2 ambiguity function.

To illustrate how this ambiguity function is formed, (6.16) is rewritten as

p̂p(t, fd) = hp(t, fd) ∗ p(t, fd), (6.29)

where p̂p(t, fd) is the estimate acquired with the pth waveform and hp(t, fd) represents

a generic impulse response associated with the pth waveform. Coherently combining

a set of P range profiles (inherent in the SAR imaging process) allows this equation

to be rewritten as

p̂(t, fd) =
P

∑

p=1

p̂p(t, fd) =
P

∑

p=1

[hp(t, fd) ∗ p(t, fd)] . (6.30)

Using the distributive property of convolution, p(t, fd) can be removed from the sum

giving,

p̂(t, fd) =

[

P
∑

p=1

hp(t, fd)

]

∗ p(t, fd). (6.31)
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The individual hp(t, fd) impulse response functions are calculated as the 2-D Fourier

transform of their associated data support regions Hp(f, td). Using this fact and the

linearity of the Fourier transform gives

p̂(t, fd) =

{

F−1

[

P
∑

p=1

Hp(f, td)

]}

∗ p(t, fd), (6.32)

where Hp(f, td) represents the data support region of the pth waveform. Equa-

tion (6.32) shows the effective impulse response when summing a series of range

profiles (as done in (6.30)) is determined by the sum of their data support regions.

By changing the frequency order on subsequent SF waveforms, different subsets of

the desired B × τ support region are sampled. Thus, summing range profiles from a

series of different SF waveforms produces the same range profile as would be gener-

ated from a single waveform with a data support region equal to the sum of the data

support regions of the individual SF waveforms. Note, (6.32) assumes the scene does

not change throughout generation of P range profiles. Since the SAR platform is in

motion, this assumption is not strictly correct. However, as shown in the simulated

imagery that follows, platform motion is slow enough to achieve the desired effect.

6.5 Subpulse Frequency Order Selection

The previous section illustrated how the combination of range profiles from

multiple SF waveforms effectively combines their data support regions. The only

difference between these SF waveforms is their subpulse frequency order. This section

outlines metrics and methods for guiding subpulse frequency order selection.

6.5.1 Selection Metrics. The key to the proposed anti-aliasing technique

is uniformly filling the data support region. Quantifying the degree of uniformity is

most convenient using the permutation matrix viewpoint of SF waveforms introduced

in (6.26). Since the matrix representation of each SF waveform is an N × N permu-

tation matrix K, the data support region coverage can be represented by summing
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permutation matrices from P distinct SF waveforms. The result is termed a composite

permutation matrix, denoted A with elements akl and defined as

A =
P−1
∑

p=0

Kp. (6.33)

The degree of uniformity in A can be calculated via a simple two step process.

First, matrix A is normalized by the ratio P/N (which denotes the value of akl for

uniformly filled A). Second, the average variance of each element of the normalized

version of A is computed via

var

(

N

P
akl

)

=
1

N2

N−1
∑

k=0

N−1
∑

l=0

(

N

P
akl − 1

)2

. (6.34)

The data support region is uniformly filled when var(N/P · akl) = 0. This filling

occurs when akl = P/N ∀ k, l.

Uniformly filling the data support region is not the only important consideration

when selecting subpulse frequency order. Another consideration involves the matched

filter’s response when multiple SF waveforms are present. This concern is critical since

the CW transmission requirement dictates multiple SF waveform echoes are received

at a given time. Ideally, applying the matched filter for one waveform to the echo

from a different waveform should result in a complete energy cancelation. In this case,

the waveforms are termed orthogonal.

Analytically, two waveforms x(t) and y(t) are temporally orthogonal when their

inner product is zero. The inner product 〈·, ·〉 is defined as

〈x, y〉 =

∫ ∞

−∞

x(t)y∗(t)dt. (6.35)

Since SF waveforms are collections of non-overlapping single-frequency subpulses, the

inner product of a full waveform is the sum of the inner products of the N subpulses.
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Combining this fact with (6.25) gives the following

〈x, y〉 =
1

τ

N−1
∑

n=0

∫ ∞

−∞

rect

(

t − nτs

τs

)

exp [j2π (fx
n − f y

n) t] dt. (6.36)

The argument of the exponential function contains the expression (fx
n − f y

n) denoting

the difference in frequency between the nth subpulse of x and y. Furthermore, (6.36)

assumes the two SF waveforms are perfectly aligned in time. Due to the uniform

spacing of subpulse frequencies, the quantity (fx
n − f y

n) is known to be an integer

multiple of δf , thus

〈x, y〉 =
1

τ

N−1
∑

n=0

∫ ∞

−∞

rect

(

t − nτs

τs

)

exp (j2πmnδf t) dt, (6.37)

where mn is an integer denoting the number of frequency steps separating fx
n and

f y
n . The integral in (6.37) is recognizable as the Fourier transform of a rect function.

Evaluating this Fourier transform (and dropping the phase term) yields

〈x, y〉 =
1

τ

N−1
∑

n=0

τssinc (mnδfτs) . (6.38)

Using (6.28), (6.38) reduces to

〈x, y〉 =
τs

τ

N−1
∑

n=0

sinc (mn) =
1

N

N−1
∑

n=0

sinc (mn) . (6.39)

Equation (6.39) indicates if the nth subpulse of both x and y are at the same frequency

(implying mn = 0), the contribution from that subpulse to the total inner product is

1/N . Such an occurrence is called a coincidence [116]. However, if a given subpulse

contains two different frequencies, mn is a non-zero integer, sinc(mn) = 0, and the

subpulse contributes nothing to the total inner product. Thus, if the subpulses of two

SF waveforms are arranged such that none of the frequencies occur at the same time

within the waveform, the two waveforms are temporally orthogonal.
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If the two SF waveforms are offset in time, the inner product no longer equals

zero, even if there are no coincidences (although the inner product remains quite low,

near 1/N [116]). However, since these cross correlation sidelobes are different for each

subpulse frequency order (and hence different for each SF waveform), they do not add

coherently over a waveform sequence, making their effect negligible.

6.5.2 Random Selection. Perhaps the most obvious approach to subpulse

frequency order selection is to randomly re-order the subpulse frequencies on a waveform-

to-waveform basis. This approach not only guarantees each waveform contains one

and only one subpulse at each frequency, but also ensures each waveform is created

independently from all other waveforms.

Figure 6.7 shows the central region of the ambiguity function which results from

combining the time-frequency auto-correlation functions of a series of 100 different SF

waveforms, each with N = 100 subpulses. Subpulse frequency order was determined

randomly on a waveform-to-waveform basis. As expected, the structure is essentially a

2-D |sinc(·)|2 function with nulls near non-zero integer multiples of fe = 1/τ . However,

the nulls are not infinitely deep due to the non-uniform filling of the data support

region.

As indicated in Section 6.5.1, the deviation from uniform filling of A can be

quantified by calculating a normalized variance per (6.34). When using random sub-

pulse frequency order selection, each element akl becomes a binomial random variable

with probability p = 1/N over n = P Bernoulli trials. Given this information, it

becomes possible to calculate both the expected value E{·} and variance var(·) of akl

to be [78],

E{akl} = np =
P

N
, (6.40)

var(akl) = np(1 − p) =
P

N

(

1 − 1

N

)

. (6.41)
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Figure 6.7: Central region of the ambiguity diagram for the coherent
combination of 100 random SF waveform realizations (N = 100, 50.0
dB dynamic range). The shape approximates a 2-D |sinc(·)|2 function
with nulls of depths near -40.0 dB.
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Recall the variance calculation in (6.34) used a normalized version of A. Thus,

since [78]

var(kx) = k2var(x), (6.42)

where x is a random variable and k is a constant, the expected value for (6.34) under

random subpulse frequency order selection is

E

{

var

(

N

P
akl

)}

=
N

P

(

1 − 1

N

)

=
N − 1

P
. (6.43)

Since

lim
P→∞

var

(

N

P
akl

)

= 0, (6.44)

the data support region filling is approximately uniform for large P .

The second metric for characterizing SF waveforms is the inner product. The

randomization process of subpulse frequencies ensures the odds of the same subpulse

sharing the same frequency for any two independent waveform realizations is 1/N , yet

each of these waveforms has N different subpulses. Since the expectation operator is

linear, the total expected value for the number of coincidences is simply 1/N×N = 1.

Thus, from (6.39)

E {〈x, y〉} =
1

N
, (6.45)

and for large N , the expected value of the inner product becomes small.

6.5.3 Shuffled Circulant Matrix Selection. Although random SF waveform

selection provides good performance, it is possible to do significantly better with

relatively little effort. The key to these improvements is the realization the N × N

matrix defining the data support region can be treated as a puzzle where each SF

waveform provides N of the N2 pieces. Ideally, it should be possible to construct a

series of N SF waveforms exactly filling the required space.

One method to precisely fill the data support region in only P = N waveforms is

to use a sequence consisting of N circularly shifted variants of the SF approximation to
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an LFM down chirp. Equation (6.46) shows a matrix Zc representing such a sequence

for N = 10

Zc =





















































1 2 3 4 5 6 7 8 9 10

10 1 2 3 4 5 6 7 8 9

9 10 1 2 3 4 5 6 7 8

8 9 10 1 2 3 4 5 6 7

7 8 9 10 1 2 3 4 5 6

6 7 8 9 10 1 2 3 4 5

5 6 7 8 9 10 1 2 3 4

4 5 6 7 8 9 10 1 2 3

3 4 5 6 7 8 9 10 1 2

2 3 4 5 6 7 8 9 10 1





















































. (6.46)

The structure of Zc in (6.46) is known as a circulant matrix [145]. Elements labeled

1 comprise the permutation matrix defining subpulse frequency order for the first SF

waveform. Elements labeled 2 represent the order for the second waveform, and so on.

Each set of numbers represents a valid permutation matrix, and all the permutation

matrices fit together perfectly without overlapping.

Unfortunately, there is a significant problem which arises using this approach.

Time shifts of two SF waveforms generated by Zc can result in up to N − 1 subpulse

frequency coincidences. The combined range profiles of all N SF waveforms should,

theoretically, eliminate the effects of these coincidences. However, simulations have

shown the subtle changes in range profiles due to platform motion prevent perfect

cancelation. Stated another way, the cross-correlation sidelobes resulting from SF

waveforms defined by Zc are too high to be ignored.

To eliminate this problem, note exchanging either rows or columns of a permu-

tation matrix results in a new permutation matrix with a different subpulse order.

Thus, the permutation matrix defining subpulse frequency order for any possible SF

waveform with N subpulses can be represented as a “shuffling” of either the rows or

columns of any N × N permutation matrix.
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Using the shuffling principle, the subpulse frequency order for a set of N SF

waveforms with N subpulses can be defined by randomly shuffling first the rows, then

the columns of a circulant matrix Zc. The result is called a shuffled circulant matrix

Zs. An example of such a matrix is

Zs =





















































4 10 7 5 6 9 1 2 8 3

6 2 9 7 8 1 3 4 10 5

2 8 5 3 4 7 9 10 6 1

8 4 1 9 10 3 5 6 2 7

1 7 4 2 3 6 8 9 5 10

7 3 10 8 9 2 4 5 1 6

9 5 2 10 1 4 6 7 3 8

5 1 8 6 7 10 2 3 9 4

10 6 3 1 2 5 7 8 4 9

3 9 6 4 5 8 10 1 7 2





















































. (6.47)

All ten SF waveform codes fit perfectly together, covering all N2 elements using only

N SF waveforms, but each individual code appears essentially random, minimizing

cross-correlation sidelobe concerns.

Figure 6.8 shows the central region of the ambiguity function created by co-

herently combining 100 members of a 100-length code defined by a shuffled circulant

matrix. A comparison to Fig. 6.7 illustrates the shuffled circulant matrix approach

provides deeper nulls at precisely the desired locations, which implies better Doppler

filtering performance.

Comparing Fig. 6.7 to Fig. 6.3 illustrates another benefit of SF waveform SAR

imaging. Unlike the LFM waveform ambiguity function (Fig. 6.3), the Combined

SF waveform ambiguity function does not exhibit any range-Doppler coupling. This
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Figure 6.8: Central region of ambiguity diagram for the coherent
combination of all 100 SF waveforms specified by a 100 × 100 shuffled
permutation matrix (50.0 dB dynamic range). The shape approximates
a 2-D |sinc(·)|2 function with nulls of depth greater than -50.0 dB.
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feature ensures slight variations in Doppler frequency throughout the scene will not

cause defocusing2.

Since successive blocks of the data support region are filled in a rigidly defined

fashion, the calculation of var(N/P · akl) is now deterministic. The elements akl of

A must contain either the value floor(P/N) or ceil(P/N), where the floor and ceil

functions round their arguments down or up to the nearest integer, respectively. The

full expression for the variance is

var

(

N

P
akl

)

=
N − mod(P,N)

N

[

N

P
floor

(

P

N

)

− 1

]2

+
mod(P,N)

N

[

N

P
ceil

(

P

N

)

− 1

]2

, (6.48)

where mod(P,N) returns the remainder of P/N . Figure 6.9 illustrates a comparison

of (6.43) and (6.48) for N = 100, P = 1 to 200. At P = 1, the two methods give the

same result. Yet as P increases, the more structured SF waveform definition process

achieves significantly better results. When P is an integer multiple of N , the shuffled

circulant matrix approach guarantees a uniformly filled data support region, resulting

in the ideal var(N/P · akl) = 0 condition.

Using shuffled circulant matrices for SF waveform generation is also advanta-

geous from the standpoint of the inner product. Since each waveform is explicitly

designed to prevent the same frequency from occurring in the same subpulse on two

different waveforms, the inner product is guaranteed to equal zero. Thus, the N SF

waveforms generated by a shuffled circulant matrix form an orthonormal set.

6.6 Summary

This chapter introduced a new waveform diversity-based anti-aliasing technique

for wide-angle SAR imagery. This technique solves the second of the two WAM-

2This statement is not claiming SF waveforms solve the problem of shifting locations for moving

targets. Moving targets in SAR imagery are blurred and/or shifted depending on their velocity
vector orientation. These effects are explored in [33,40,47,66,94].
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and circulant matrix (solid line) approaches. Note, var[N/P · akl] = 0
when P is a non-zero integer multiple of N .
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SAR implementation issues introduced in Chapter II. The chapter began by deriving

the aliasing problem from an antenna array perspective, before introducing platform

Doppler shifts, demonstrating the equivalence of Doppler and cross range aliasing

artifacts. Having mathematically defined the problem, the chapter demonstrated a

theoretical anti-aliasing method based on required scene information. After illus-

trating the limitations of traditional LFM waveforms, the chapter then showed how

continuous sequences of randomized SF waveforms provide the required data. Fi-

nally, a new SF waveform definition method based on matrix “shuffling” was shown

to produce orthonormal waveform sets, leading to improved technique performance.

Chapters VII-IX provide both simulation and laboratory data results demonstrating

technique effectiveness.
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VII. 2-D Monostatic Point Scatterer Anti-Aliasing

Technique Simulation

Chapter VI proposed a new technique for eliminating cross range aliasing arti-

facts in Synthetic Aperture Radar (SAR) images using Stepped-Frequency (SF)

waveforms. This chapter demonstrates the technique using a Two-Dimensional (2-D)

monostatic point scatterer simulation. It begins by developing the simulator itself

and then demonstrates the desired technique in both one and two dimensions. The

point scatterer simulation code is included in Appendix D. All code was written in

Matlabr. This chapter’s results are independently verified in [92].

7.1 In-Phase and Quadrature Sampling

While the actual transmitted waveforms are continuous, the computer simula-

tion must deal with discrete waveform samples. The same is true of modern radar

systems which perform signal processing using digitally sampled waveform echoes

verses older analog processing techniques. Due to the digital nature of both the sim-

ulated and true radar data, sampling becomes a critical issue. One common solution

is to use In-phase and Quadrature (I/Q) sampling.

The key to digital representation of continuous signals is the sampling theorem,

which states for a given continuous real signal xc(t) of finite bandwidth B, digital

samples taken at time intervals of ti ≤ 1/2B can be used to unambiguously reproduce

the original continuous signal [91]. Recovery of the original continuous signal from

the digital data (denoted x(t)) is achieved using an appropriately designed filter.

The I/Q sampling process begins by breaking the continuous signal xc(t) into

two components. The first is an exact signal copy and the second is a copy delayed

by 90◦ in phase. These two signals are then sampled at intervals of ti, resulting in the

digital I and Q signal components denoted xI(t) and xQ(t), respectively. Since two

samples are being taken at each sampling interval ti, this interval only needs to be

half of the Nyquist sampling rate,

ti ≤
1

B
. (7.1)
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The I/Q sampling approach provides several advantages. First, while the num-

ber of samples (and therefore the amount of digital data) is the same whether being

sampled with one or two channels, the dual channel approach allows the sampling

rate of each channel to be slower. This procedure simplifies the Analog-to-Digital

(A/D) converter design. While this process has no impact on a simulation, the im-

pact on hardware implementation can be significant. Second, the use of I/Q sampling

prevents blind phases [116]. In single channel sampling, samples are not guaranteed

to occur at signal positive/negative peak values and a loss of energy can occur in the

sampled signal. In certain situations, successive samples can occur at zero crossings,

resulting in samples of zero energy and therefore blinding the radar to those phases.

Using I/Q sampling, the 90◦ phase delay eliminates blind phases ensuring the sampled

signal energy |xI(t)|2 + |xQ(t)|2 is uniform, regardless of signal phase characteristics.

Finally, the use of I/Q sampling simplifies mathematical representation by allowing

the use of complex notation.

Delaying the incoming signal phase by 90◦ (i.e., adding −π/2 radians) is equiv-

alent to application of a filter with transfer function H(f) defined by [144]

H(f) = −j sgnf, (7.2)

where

sgnf =



















1, f > 0

0, f = 0

−1, f < 0.

(7.3)

The ImPulse Response (IPR) h(t) of H(f) is

h(t) =
j

πt
. (7.4)

The filtered version of the continuous signal xc(t) is therefore

x̂c(t) = h(t) ∗ xc(t), (7.5)
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where x̂c(t) is known as the Hilbert transform of xc(t) [144].

Since the in-phase and quadrature components are samples of the same signal

with a 90◦ phase difference, the two real-valued data samples can be easily represented

using a single complex number, allowing the digitally sampled signal x(t) to be written

as

x(t) = xI(t) + j xQ(t), (7.6)

where xI(t) and xQ(t) are the sampled versions of xc(t) and x̂c(t) respectively. This

representation also significantly impacts the signal’s frequency spectrum. A standard,

real-valued signal has an even spectrum. By using the complex I/Q representation

of (7.6), the spectrum is folded over onto the positive frequency half of the spectrum

function which doubles the spectrum’s amplitude (see Fig. 7.1).

If the center frequency fc is removed from the complex signal x(t), the result is

a complex baseband signal xb(t). This approach allows x(t) to be rewritten as

x(t) = xb(t) exp(j2πfct). (7.7)

The baseband complex signal xb(t) is often called the complex envelope of x(t) [144].

Complex envelope notation dramatically simplifies mathematical signal manipulation.

Consider for example a continuous sinusoidal signal xc(t) = cos(t). Application of the

Hilbert transform to cos(t) results in sin(t) giving

x(t) = cos(t) + j sin(t) = exp(jt). (7.8)

Since the exponential function is also the Fourier transform integral’s kernel, Fourier

analysis with the complex envelope signals is relatively easy. After the desired pro-

cessing is complete, the true transmitted/received signal may be found simply by

taking the real component of the complex result.
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Figure 7.1: Real and complex-valued signal spectra.
The use of complex values (from I/Q representation)
causes a fold over of the spectrum.
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7.2 Linear Frequency Modulation Waveform Simulation

Simulation of traditional SAR imaging systems requires Linear Frequency Mod-

ulation (LFM) waveforms. These waveforms are used for comparison purposes with

the SF waveform-based anti-aliasing approach. Using complex envelope notation,

LFM waveforms may be expressed as (6.23)

x(t) = rect

(

t

τ

)

exp[2π(fct + αt2)], (7.9)

where

rect

(

t

τ

)

=







1, − τ
2
≤ t < τ

2

0, otherwise,
(7.10)

τ is the pulse width, fc is the center frequency and α is the chirp rate. The waveform’s

instantaneous frequency fi(t) can be found by taking the phase term’s time-derivative

fi(t) =
d

dt
(fct + αt2) = fc + 2αt. (7.11)

This equation allows estimation of the bandwidth B as1

B ≈ |2ατ |. (7.12)

The analog expression for an LFM waveform makes generating LFM waveform

samples simple. The user defines a vector of sample times and evaluates (7.9) at

those times. Figures 7.2-7.4 illustrate the simulated LFM waveform behavior in the

time and frequency domains. For these figures, the following parameters were used:

fc = 5 MHz, B = 10 MHz, τ = 100 µs, and α = B/2τ = 5 × 1010 s−2. Note,

ti = 3/B indicating sampling at three times the Nyquist rate since the complex

envelope representation generates two samples at each time step. The ratio of the

1This bandwidth value is only an approximation. The true signal bandwidth is broadened by the
transmit pulse’s finite duration.
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Figure 7.2: LFM waveform Re{x(t)}. Frequency in-
creases with time due to positive α.

true sampling rate to the Nyquist sampling rate is known as the oversampling ratio

η.

Figure 7.2 shows the real component Re{x(t)} (i.e., I channel only) of the first

20 µs of the time domain waveform x(t) generated by (7.9). The real component is

the actual transmitted wave. As expected, the waveform oscillates between -1 and

1. The oscillation frequency begins at fc − ατ = 0 Hz and increases rapidly. The

magnitude of the complex (i.e., I/Q sampled) wave is simply the magnitude of the

exp(·) function and is therefore equal to one at all times.

Figure 7.3 illustrates the frequency spectrum magnitude |F [x(t)]| of the complex

sampled waveform whose real component was plotted in Fig. 7.2. The notation| · |
denotes the magnitude operation while F represents the Fourier Transform (FT). The

frequency axis runs from −3B/2 to 3B/2, the entire alias-free region. Outside these

bounds, the frequency spectrum can be determined by replicating the current figure.

The waveform’s spectrum clearly exhibits roughly uniform energy for 0 ≤ f ≤ B. The

shape is consistent with that shown in [65]. Spectrum bandwidth covers one-third of

the alias-free region as a consequence of the factor of three oversampling ratio η = 3.
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Figure 7.3: Frequency spectrum magnitude of I/Q
sampled LFM waveform x(t).

Figure 7.4 shows the frequency spectrum magnitude of the simulated waveform’s

real component. The loss of half the samples has caused a reflection about the f = 0

axis, cutting both the spectrum amplitude and oversampling ratio by a factor of two.

Figure 7.5 illustrates the result of applying a matched filter to the complex

LFM signal. This operation produces the square root of the ambiguity function’s

zero Doppler cut |χ(te, 0)| (see (6.24)). The null-to-null width is c/B = 30 meters, as

expected. Additional nulls appear every c/2B = 15 meters. The number of samples

from one null to the next is three, again representative of the oversampling ratio.

7.3 Stepped-Frequency Waveform Simulation

SF waveforms are a contiguous series of single-frequency sinusoidal subpulses

with carefully chosen subpulse frequencies. This section demonstrates SF waveform

implementation, validating expected time domain and frequency domain behavior.
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Figure 7.4: Frequency spectrum magnitude of real
LFM waveform Re{x(t)}.
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Figure 7.5: |χ(te, 0)| for an LFM waveform. Time mis-
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Analytically, an SF subpulse with duration τs and frequency f is represented as

x(t) = rect

(

t

τs

)

exp(j2πft). (7.13)

The waveform’s N subpulses follow each other without any time gaps. This require-

ment allows mathematical representation of the entire waveform as

x(t) =
N−1
∑

n=0

rect

(

t − nτs

τs

)

exp(j2πfnt). (7.14)

The subpulse frequencies {fn} are uniformly distributed across the bandwidth B and

can be arranged in any order. The bandwidth B, waveform duration τ = Nτs, and

number of subpulses N are related via the equation [34,116]

Bτ = N2, (7.15)

which can also be represented as [79]

δfτs = 1, (7.16)

where δf = B/N is the minimum difference between subpulse frequency values. The

importance of this relationship is demonstrated in the following paragraphs.

The easiest way to construct an SF waveform would be to build duration τ

waveforms at each frequency, window them appropriately using the rect(·) function

and then sum the N copies together. Unfortunately, this approach is very inefficient

in terms of both memory usage and computation load. To simplify the process, each

SF waveform is constructed by building a frequency vector to accompany the time

vector. The sampling interval ti = 1/ηB implies the total number of complex samples

is τ/ti = ηN2. The time vector runs linearly from zero to τ , but the frequency vector

is broken into N chips, each with ηN samples. Each of these chips corresponds to a

single subpulse and the frequency value within each chip is held constant.
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Figure 7.6: SF waveform Re{x(t)} with subpulse fre-
quencies arranged to simulate an LFM waveform. Dotted
lines show divisions between subpulses. Note that exactly
one cycle is added per subpulse as predicted by (7.16).

Figure 7.6 shows the first 50 µs of a simulated SF waveform’s real component

Re{x(t)}. The waveform parameters are B = 10 MHz and N = 100 implying τ =

N2/B = 1000 µs. The subpulse frequencies are arranged in a monotonically increasing

fashion to simulate a standard LFM waveform. Dotted lines show divisions between

successive subpulses. Each subpulse adds exactly one additional cycle (as predicted

by (7.16)). This relationship also ensures that with a starting phase of 0◦ and a high

enough sampling rate, the sampled SF waveform is virtually continuous. Transitions

between subpulses exhibit only curvature discontinuity. This fact is true for any

temporal subpulse order, although the greater the frequency gap between successive

subpulses, the greater the curvature discontinuity and the more noise-like the resulting

frequency spectrum.

Figure 7.7 shows the SF waveform’s frequency spectrum magnitude when the

subpulse frequencies are arranged in a monotonically increasing order. This figure is

virtually identical to the true LFM spectrum depicted in Fig. 7.3.
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Figure 7.7: Frequency spectrum magnitude of SF ap-
proximation to an LFM waveform (B = 10 MHz, N =
100).

One way to verify SF waveform frequencies occur at the expected time is through

the Short Time Fourier Transform (STFT). The STFT takes the FT of a fixed width

SF waveform data window and then steps this window along each point in the time-

domain SF waveform representation. Setting the STFT window width equal to the

subpulse width τs = τ/N allows the user to examine the SF waveform frequency’s

temporal behavior. Figure 7.8 shows the SF waveform’s STFT. As expected, the

frequency increases in a step-like fashion. Due to the finite subpulse duration, an

individual frequency is spread to cover a band of approximately B/N MHz. From

basic Fourier Transform (FT) properties (Appendix A) the uniform temporal width

τs gives a null-to-null frequency width of 2/τs. Using (7.16) this width equates to 2δf

implying a true bandwidth criterion of

20 log10

[

sinc

(

1

2

)]

≈ −4 dB. (7.17)
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Figure 7.8: STFT of SF waveform (B = 10 MHz, N =
100, window width = τs). Frequency is monotonically
increasing in a discretized LFM fashion.
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Figure 7.9: Frequency spectrum magnitude of SF ap-
proximation to an LFM waveform (B = 10 MHz, N =
10).

In Figures 7.9 and 7.10, the number of SF subpulses N was reduced from 100

to 10. The result is a much more coarse LFM waveform approximation. Figure 7.9

shows the frequency spectrum magnitude. It is more coarse than the N = 100 case

(Fig. 7.7) although it does exhibit the same general shape. The same is true of the

STFT shown in Fig. 7.10. These results show that for large N , appropriately designed

SF waveforms provide excellent approximations to LFM, but as N becomes smaller

the approximation begins to break down.

One key SF waveform feature is the ability to reorder the subpulse frequencies.

This ability is what makes approximate filling of the B × τ data support region

possible. Figure 7.11 shows the frequency spectrum magnitude for an SF waveform

(B = 10 MHz, N = 100) with randomized subpulse frequency order. Despite this

randomization, the spectrum still covers the same 10 MHz bandwidth. The frequency

coverage in this region appears much more noise-like. This effect is caused by placing

subpulses with drastically different frequencies next to each other in the time-domain

waveform. Figure 7.12 shows the result of applying the STFT to the SF waveform.
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Figure 7.10: STFT of SF waveform (B = 10 MHz, N =
10, window width = τs). Frequency is monotonically
increasing in a discretized LFM fashion.
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Figure 7.11: Frequency spectrum magnitude of a ran-
domized SF waveform (B = 10 MHz, N = 100).

The randomized frequency order is clearly evident. Figure 7.13 shows a close-up of

Fig. 7.11 around the 5 MHz region. Even though the spectrum is quite noisy, it does

not contain any significant gaps. The spectrum nodes (e.g., at f = 5 MHz) occur at

the true frequency values {fn} used to generate the subpulses.

Figure 7.14 demonstrates the SF waveform’s noisy spectrum has not signifi-

cantly degraded performance. It shows the square root of the zero Doppler cut of the

randomized SF waveform’s ambiguity function |χ(te, fe)|. As expected, the overall

shape is sinc-like in nature, with its null-to-null resolution defined by c/B. The side-

lobe structure has been slightly perturbed by the noisy spectrum, but the sidelobe

magnitudes remain quite small.

Up to this point, all SF waveforms have been constructed with strict adherence

to (7.15), which defines the relationship between the bandwidth B , pulsewidth τ ,

and number of subpulses N . If Bτ < N2, the subpulse duration is too short, causing

excessive energy spreading into neighboring data support region blocks. This effect

negatively impacts auto and cross-correlation sidelobe structure. However, a much
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Figure 7.12: STFT of a randomized SF waveform (B =
10 MHz, N = 10, window width = τs).
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Figure 7.13: Close-up of a randomized SF waveform’s
frequency spectrum magnitude (B = 10 MHz, N = 100).
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Figure 7.14: |χ(te, 0)| for a randomized SF waveform.
Time mismatch error te converted to range r via r =
cte/2.

more significant consequence occurs when Bτ > N2, as illustrated by the following

figures.

Figure 7.15 shows the frequency spectrum magnitude of a randomized SF wave-

form with B = 20 MHz, N = 100, and τ = 1000µsec (implying Bτ = 2N 2). Due to

the increase in bandwidth, the oversampling ratio η is reduced from 3 to 1.5, but is

still significantly above Nyquist. The frequency spectrum variation within the wave-

form bandwidth is even more pronounced than in Fig. 7.15. This effect is more clearly

visible in Fig. 7.16, which shows a zoomed image of the frequency spectrum. In this

case, the excessive frequency spacing has led to an approximately sinusoidal varia-

tion within the waveform’s spectrum. The spectrum peaks correspond to the true

frequencies used to form individual subpulses. These frequency spectrum gaps lead

to serious repercussions in the waveform ambiguity function (Fig. 7.17). Recall from
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Figure 7.15: Frequency spectrum magnitude of a ran-
domized SF waveform (B = 20 MHz, N = 100). Equa-
tion (7.15) violated.

Section 3.10, the unambiguous range extent ∆r is determined by (3.27)2

∆r = N
c

2B
, (7.18)

where N is the number of frequency samples. When the spectrum was continuous,

N → ∞, implying no limit to range swath size (at least from a sampling perspective).

However, with gaps in the frequency information, there is a maximum range swath

∆r = N
c

2B
= 100

3e8

2 · 20e6
= 750 m. (7.19)

This limitation manifests itself in Fig. 7.17 where aliased copies of the ambiguity

function peak appear at ±∆r from the reference radius.

Figures 7.15-7.17 illustrate the importance of obeying (7.15). There are pro-

posed methods to circumvent this limitation by imposing some form of frequency di-

2Equation 3.27 defined range in x-direction due to the traditional narrow-angle convention. No
such assumption is made here, thus ∆r is substituted for ∆x.
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Figure 7.16: Close-up of a randomized SF waveform’s
frequency spectrum magnitude (B = 20 MHz, N = 100).
Equation (7.15) violated.
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Figure 7.17: |χ(te, 0)| for a randomized SF waveform.
Time mismatch error te converted to range r via r =
cte/2. Equation (7.15) violated causing range aliasing
artifacts.
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versity on the subpulses themselves, allowing the user to increase system bandwidth

(and thus improve range resolution) without decreasing subpulse width τs and/or in-

creasing the number of subpulses. One promising approach involves superimposing

LFM chirps on the individual SF subpulses [79]. This method was validated with the

proposed anti-aliasing technique in [92].

7.4 Generation of Simulated Point Scatterer Data

With the demonstrated ability to produce SF waveforms with user defined pa-

rameters, it becomes possible to build a point scatterer simulation to test the anti-

aliasing technique. This section outlines the basic structure and assumptions used to

generate the simulation data.

First, it should be noted the simulation was limited to two dimensions. This is

consistent with the principle that real SAR data processed in the 2-D slant range/cross

range collection plane can easily be projected into the 2-D ground plane (e.g., by

appropriate specification of image domain coordinates as illustrated in Sec. 5.6.2).

Chapter VIII extends the simulator to the 3-D bistatic case. Most SAR systems

traverse approximately linear flight paths as they image the ground. This linear flight

path can be treated as the z-axis of a cylindrical coordinate system (ρ, z, φ) defining

the collection geometry. As the data is collected, 2-D SAR processing determines

the slant range ρ and cross range z-coordinates of each scatterer, but is unable to

determine the angle φ [126]. In other words, each point scatterer is represented as

a circular cut of the cylindrical collection geometry. This angular ambiguity can be

broken in different ways, but the most common is a two step process accounting

for the physical realities of SAR data collection. First, target echoes are assumed

to come from ground-based objects. By intersecting the ground plane (or suitable

warped contour map, see Chapter V) with the cylindrical collection geometry, the

ambiguity is reduced from a circle, to two points, one on each side of the flight path.

This situation is termed the left-right ambiguity [126]. Breaking this ambiguity is

accomplished by assuming the SAR antenna’s finite beamwidth contains only one of
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Figure 7.18: 2-D ρφ-plane of a 3-D SAR collection
geometry. The SAR platform is at the figure’s center.
Assuming a roughly linear flight path, location of a sin-
gle point scatterer at range ρ results in an ambiguous φ
value. Assuming a flat ground plane reduces this circular
ambiguity to the 2 point left-right ambiguity. The finite
beam (gray shaded region) breaks the final ambiguity.

the two points. Figure 7.18 illustrates these ambiguities by showing the 2-D ρφ-plane

for a 3-D SAR collection geometry.

The simulator begins by querying the user for a number of critical parameters.

These parameters can be broken down into four categories: platform, waveform, im-

age, and scatterer parameters and are listed in Table 7.1. The next several paragraphs

describe how the simulator uses this information to generate the scene’s simulated

radar echoes.

Having received the parameter list, the simulator determines the platform’s

spatial location for each Coherent Processing Interval (CPI) pulse by dividing the

synthetic aperture length L into uniformly spaced segments of length δu = va/PRF.

The center of each segment denotes the SAR platform location for a single CPI pulse.

This process makes use of the start-stop approximation, assuming the radar plat-
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Table 7.1: Key simulator parameters
Parameter Type Description Units

va platform platform (aircraft) velocity m/s
PRF platform pulse repetition frequency Hz

L platform synthetic aperture length m
Rmin platform minimum range m
Rmax platform maximum range m
∆θ platform beamwidth deg
fc waveform center frequency GHz
B waveform bandwidth MHz
N waveform number of subpulses unitless

I(xc, yc) image image center (m, m)
D(x, y) image image dimensions (m, m)

NUM(x, y) image pixel numbers in x & y axes unitless
sn(x, y) scatterer location (m, m)

form is at a fixed location during transmission/reception of each waveform. If this

assumption is too restrictive, the geometry can be treated in a bistatic fashion, where

the transmission and reception locations are separated by a distance defined by the

platform velocity and round-trip waveform propagation time3.

After determining the platform location, a time vector t is created for recording

the radar echoes. The time vector spans

cRmin

2
≤ t <

cRmax

2
+ τ, (7.20)

and is sampled at twice the bandwidth (i.e., twice Nyquist). This time period covers

uncompressed echo energy from all scatterers falling within the specified range swath

Rmin to Rmax. The time vector, along with the waveform parameters and desired

subpulse frequency order, are then used to build a reference transmit waveform wTX(t)

of duration τ

wTX(t) =
N−1
∑

n=0

rect

(

t − nτs

τs

)

exp(j2πfnt). (7.21)

3While the start-stop approximation allows for the use of fixed range values for a given CPI
pulse, it does not mean the Doppler shift associated with the platform velocity can be ignored. This
Doppler shift is critical to the Doppler filter-based anti-aliasing technique.
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Different waveforms may be generated by changing the subpulse frequency order.

Under the point scatterer assumption, the expected echo from each of the M

scatterers is simply a delayed and Doppler shifted version of the transmitted waveform.

Incorporating these effects into the transmitted waveform gives the expected waveform

echo from the mth scatterer

wRXm
(t) = Am

N−1
∑

n=0

rect

(

t − nτs − 2rm/c

τs

)

exp[j2π(fn + fdm) · (t − 2rm/c)], (7.22)

where Am, rm, and fdm are amplitude, range, and Doppler shift due to the mth

scatterer, respectively. The scatterer amplitude is calculated on a binary basis. All

scatterers falling within the main beam (∆θ) have value Am = 1. All others receive

value Am = 0. This approach does not model the fine structure of the azimuth

beam or the dependence of amplitude on range. These effects are not important for

demonstration of the anti-aliasing technique, but could be added without difficulty.

Since the point scatterer assumption treats each scatterer independently, the

combined effect of all scatterers can be found via superposition. The received radar

echo wRX(t) at a given location along the synthetic aperture is therefore given by

wRX(t) =
M−1
∑

m=0

wRXm
(t), (7.23)

which is then converted to baseband via

wRXb
(t) = wRX(t) exp(j2πfct), (7.24)

and saved along with the corresponding CPI pulse number and subpulse frequency

order. The process is repeated for each location along the synthetic aperture. At each

location, ranges and Doppler shifts are recalculated according to the instantaneous

geometric relationship between the platform and scatterers. The subpulse frequency
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order is also varied according to the user-defined method (Chapter VI described these

methods).

Before closing this section, it should be noted that the simulator does not ac-

count for cross-correlation effects associated with matched filtering echoes of one SF

waveform with another waveform composed of a different subpulse frequency order.

In a real system this situation occurs since the continuous transmission requirement

ensures returns from multiple pulses are present in the raw SF radar echoes. However,

since use of shuffled circulant matrices results in orthonormal SF waveform sets, the

effects of these additional waveform echoes are negligible.

7.5 Point Scatterer Data Processing

The raw baseband SF waveform echoes generated by the point scatterer simu-

lator contain all the information necessary to form 2-D SAR images over any ground

patch within the simulated beamwidth ∆θ and range extent ∆R = Rmax − Rmin.

To produce these images, the SAR image generation code begins by using the

set of scenario parameters to calculate the platform/scatterer locations as well as the

waveform sampling parameters. These calculations are identical to those performed

during data generation. The code then uses the image center location to define a

rectangular pixel grid used to build the SAR image. After these preliminary steps,

the code moves through each waveform sequentially. For a given waveform (i.e., CPI

pulse), the appropriate subpulse frequency order is used to build a digital matched

filter waveform wMF(t) given by

wMF(t) =
N−1
∑

n=0

rect

(

t − nτs − 2rc/c

τs

)

exp[j2π(fn + fdc) · (t − 2rc/c)], (7.25)

where rc and fdc are the instantaneous range and Doppler shift to the scene center.

This digital waveform is then converted to baseband. Note, the use of a fixed im-

age center I(xc, yc) to calculate the matched filter parameters implies spotlight mode

processing, despite the stripmap mode collection geometry.
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Matched filter application is performed in the frequency domain to obtain the

spatial frequency domain version of the One-Dimensional (1-D) range profile P (kr)

P (kr) = F [wRX(t)] · F∗[wMF(t)]. (7.26)

At this point generation of a 1-D complex range profile f(r) could be accomplished

with the Inverse Fourier Transform (IFT)

p(r) = F−1[P (kr)]. (7.27)

However, since the SAR imaging routine is built using back-projection techniques,

the range profile must be filtered to account for the differential krdkrdθ in the 2-D

monostatic back-projection integral. The true equation for the filtered complex range

profile to be used in 2-D SAR image formation is therefore

q(r) = F−1[krF (kr)]. (7.28)

Having obtained the complex filtered range profile q(r) the final step is back-

projecting this information over the pixel grid. The back-projection step completes the

processing of a single CPI pulse. The process is then repeated for each CPI pulse. The

resulting 2-D back-projections of the complex range profiles are coherently summed

to yield a single complex image. Since only one waveform is processed at a time, the

total computer memory requirements are much lower than with other SAR imaging

approaches (e.g., Polar Format Algorithm (PFA) and Range Migration Algorithm

(RMA)). Chapter V gives a more complete discussion of back-projection imaging.

7.6 Point Scatterer Simulation Results

Using the data generation code and SAR imaging code outlined in Sections 7.4

and 7.5, a SAR imaging scenario was defined to validate anti-aliasing technique perfor-

mance. This section presents the simulation results in both one and two dimensions.
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Table 7.2: 2-D monostatic simulation parameters.
∗Determined by B, N and (6.27).
Parameter Description Value

va Platform Velocity 100 & 200 m/s
PRF Pulse Repetition Frequency 2,000 Hz

L Synthetic Aperture Length 200 m
Rmin Minimum Range 75,000 m
Rmax Maximum Range 100,000 m
∆θ Beamwidth 90◦

fc Center Frequency 10 GHz
B Bandwidth 20 MHz
N Number of Subpulses 100
τ Waveform Duration∗ 500 µs

Table 7.3: Scatterer attributes: number, location, and Doppler shift (fd). Origin
(0, 0) at synthetic aperture center. Range from SAR platform to each scatterer is
calculated relative to scatterer 5.
Scat. Location fd (va = 100 m/s) fd (va = 200 m/s)

Num. x, m y, m range, m θ, deg Hz PRF Hz PRF
1 69,681 52,659 -160 37.1 4,020 2.01 8,039 4.02
2 78,320 39,154 134 26.7 2,991 1.50 5,982 2.99
3 83,846 26,020 286 17.2 1,976 0.99 3,952 1.98
4 86,393 13,235 -99 8.7 1,010 0.51 2,019 1.01
5 87,500 0 0 0.0 0 0.0 0 0.0
6 86,793 -13,235 297 -8.7 -1,001 -0.50 -2,001 -1.00
7 83,192 -26,020 -334 -17.4 -1,990 -1.00 -3,980 -1.99
8 78,120 -39,315 -45 -26.7 -2,997 -1.50 -5,994 -3.00
9 70,031 -52,659 120 -37.0 -4,007 -2.01 -8,013 -4.01

Table 7.2 lists the simulation parameters. Table 7.3 lists the scatterer information.

Two cases were simulated using platform velocities of va = 100 m/s and va = 200 m/s.

The 2-D cartesian grid’s origin is defined at the synthetic aperture center. Doppler

shifts and ranges in Tab. 7.2 are calculated from the synthetic aperture center, but

their actual values change slightly throughout the simulation as a function of instan-

taneous SAR platform location.

7.6.1 Case 1: va = 100 m/s. The first simulation case was run with a

platform velocity of 100 m/s. Using this value, the scatterer Doppler shifts differ by
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Figure 7.19: True range profile without Doppler filter-
ing (Adapted from [88]).

approximately PRF/2. This case was examined to demonstrate how the anti-aliasing

technique only eliminates scatterers at integer PRF multiples, but that these are the

only scatterers which lead to cross range aliasing.

7.6.1.1 1-D Results: Range Profiles. Before forming 2-D SAR images,

a series of 1-D range profiles were generated to verify the desired SF waveform Doppler

filtering properties [88]. Each range profile was formed with the platform fixed at the

synthetic aperture center, but the Doppler shifts to each scatterer were still included as

though the platform was moving at va = 100 m/s. Matched filtering was performed

with respect to scatterer 5, giving all scatterers range values consistent with the

“range” column of Tab. 7.3. The qualitative comparison of range profiles is a common

analysis technique in the literature (e.g., [115,125]).

Figure 7.19 shows the true range profile magnitude |p(r)| formed by plotting a

series of unit amplitude spikes corresponding to scatterer range. The Doppler shifts

do not influence scatterer amplitude. There are no sidelobes since this plot is an

idealization and not in indicative of any realizable waveform.
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Figure 7.20: Range profile generated by LFM wave-
form (Adapted from [88]). Responses from scatterers 2
and 9 merged into a single response near 130 m.

Figure 7.20 illustrates the range profile magnitude obtained using a standard

LFM waveform. This waveform was actually generated by ordering the N = 100

subpulse frequencies of an SF waveform in a monotonically increasing fashion. As

discussed in Section 7.3, for large N the differences between the analytically generated

LFM waveform and the SF approximation are negligible4. As expected, the finite LFM

waveform bandwidth determines the range profile resolution. Significant sidelobe

energy is also visible. Only eight distinct scatterers are visible in the LFM range

profile. The range-Doppler coupling and limited waveform resolution has combined

the responses from scatterers 2 and 9 at approximately 130 m, giving this peak a

significantly larger response than the other scatterers. The responses from scatterers

3 and 6 are not combined because the range-Doppler coupling effect pushes their

responses further apart instead of closer together.

4This fact was also verified by comparing to a “true” LFM waveform simulation. However, for
the sake of keeping the simulation code as uniform as possible, SF LFM waveform approximations
were used for all presented results.
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Figure 7.21: Range profile generated from a single SF
pulse with random subpulse order (Adapted from [88]).

Figure 7.21 shows the range profile magnitude generated using a single SF wave-

form with randomized subpulse frequency order. Scatterer 5 is essentially unaffected

since the matched filter parameters are tuned to this scatterer’s location. Scatterers

4 and 6 are also clearly visible, but somewhat reduced in amplitude. Other scatterers

are obscured by a large noise floor which has appeared across the entire range swath.

This noise floor is caused by the noise-like nature of the ambiguity function for a

single randomized SF waveform.

Figure 7.22 contains the range profile magnitude formed by the coherent combi-

nation of 100 random SF waveform realizations. Since the SF pulse contains N = 100

subpulses, the B × τ data support region has N2 = 10,000 blocks. By using 100 sep-

arate subpulses, the entire data support region is filled in a roughly uniform fashion,

creating the desired 2-D |sinc(·)|2 ambiguity response. The return amplitude from

scatterer 5 is essentially equivalent to the LFM waveform case (Fig. 7.20), but the

other scatterers have all been altered. Scatterers 4 and 6 appear at roughly 0.6 while

scatterers 2 and 8 appear at roughly 0.2. Scatterers 1,3,7, and 9 have been essentially

removed from the range profile. These results are consistent with a 2-D |sinc(·)|2
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Figure 7.22: Coherent combination of range profiles
generated by 100 realizations of randomly ordered SF
pulses (Adapted from [88]).

ambiguity function whose null-to-null width in along the Doppler axis is 2PRF = 2τ .

Note, scatterers 2 and 8 are expected to appear at the first sidelobe peak. This ex-

pectation is consistent with their amplitudes of 20 log10(0.2) ≈ −14.0 dB. The more

uniform data support region sampling has also dramatically reduced the noise-floor.

Although not apparent in this figure, the 2-D |sinc(·)|2 ambiguity function eliminates

the range-Doppler coupling effect, ensuring range profile echoes appear at the correct

range locations.

Figure 7.23 also shows the results from coherently combining range profiles

from 100 SF waveform echoes. However, this time the subpulse frequency order was

determined by a shuffled circulant matrix, guaranteeing uniform filling of the data

support region. The result is a reduction in the range profile noise-floor, leading to

even better performance in the final 2-D SAR images.

The Doppler filtering properties demonstrated in Figs. 7.22 and 7.23 are exactly

what is required to perform anti-aliasing in 2-D SAR imagery. Even though only four

of the eight aliased scatterers have been removed by the Doppler filter, the scatterers
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Figure 7.23: Coherent combination of range profiles
generated by all 100 SF subpulse ordering schemes dic-
tated by a composite permutation matrix.

which remain have Doppler shifts equal to non-integer Pulse Repetition Frequency

(PRF) multiples, and will therefore be removed by the spatial cross range filter built

via the SAR imaging process. This fact is demonstrated next.

7.6.1.2 2-D Results: SAR Images. Using the 2-D SAR simulator

described previously, a series of 2-D images were generated using both LFM and SF

waveforms for the va = 100 m/s case. Each image has dimensions of one square

kilometer and should contain only one scatterer. All images were normalized and

given a 20 log10(N) = 40.0 dB dynamic range. This value was selected because the

sidelobe peaks of an SF waveform are usually less than or equal to 1/N [116]. These

images illustrate the utility of the Doppler aliasing reduction technique introduced in

Chapter VI.

Figure 7.24 shows the image of scatterer 5 produced with an LFM waveform.

The true scatterer is visible at the image center as a well-focused cross-shaped IPR,

consistent with the 2-D FT nature of the back-projection imaging process. Four

aliased scatterers appear as defocused patches throughout the image. The defocusing
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Figure 7.24: LFM image of scatterer 5 for va = 100 m/s (40.0 dB dynamic
range). Scatterer 5 is well focused at image center. Other scatterers alias into
the image (adapted from [87]).

results from the SAR algorithm’s attempts to focus these aliased scatterers as though

they appeared within the image grid. The two smaller patches correspond to Doppler

shifts of approximately ±PRF (scatterers 3 and 7), while the larger patches correspond

to Doppler shifts of approximately ±2PRF (scatterers 1 and 9). Only five of the nine

scatterers appear in the image. Scatterers with Doppler shifts equal to non-integer

PRF multiples (i.e., scatterers 2, 4, 6, and 8) are not present. Note, the smaller

patches have higher peak values, making them the greater filtering challenge.

Figure 7.25 shows the image of scatterer 5 produced with SF waveforms defined

by a shuffled circulant matrix. The true scatterer appears in its correct location, but

the aliasing artifacts have been mitigated.
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Figure 7.25: SF shuffled circulant image of scatterer 5 for va = 100 m/s
(40.0 dB dynamic range). Aliasing artifacts have been completely mitigated
(adapted from [87]).
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7.6.2 Case 2: va = 200 m/s. Increasing the platform velocity from 100 m/s

to 200 m/s has several important consequences for the SAR system. First, doubling

the velocity doubles the required PRF. Since the simulation’s PRF value is held con-

stant at 2000 Hz, doubling the velocity doubles the number of cross range ambiguities.

This fact is evident in Tab. 7.3 since for the va = 200 m/s case, the Doppler shifts of all

nine scatterers differ by (approximately) integer PRF multiples. The addition of extra

ambiguities makes the anti-aliasing problem more challenging for two reasons. First,

more scatterers need to be mitigated. Second, the defocusing of the first ambiguous

scatterer pair is less severe, increasing the maximum aliased energy amplitude.

7.6.2.1 2-D Results: SAR Images. As in the va = 100 m/s case, the

SAR simulation code produced both LFM and shuffled circulant matrix SF images of

scatterer 5. Figure 7.26 shows the LFM image. The returns from scatterers 1, 3, 5, 7,

and 9 are virtually identical in both amplitude and location to those in Fig. 7.24 (the

va = 100 m/s case). However, this time returns from scatterers 2, 4, 6, and 8 are also

visible. The returns from scatterers 4 and 6 exhibit the least defocusing, giving their

aliased signatures higher amplitudes and making them harder to eliminate. These

two scatterers are also the closest to scatterer 5 in terms of distance in the xy-plane.

Figure 7.27 shows the image of scatterer 5 produced with SF waveforms defined

by a shuffled circulant matrix. Despite the addition of the even numbered scatterers,

the technique still mitigates the aliasing artifacts. However, a few noise-like, low-

level pixels are visible around the image. This effect is a consequence of the noise-like

ambiguity structure of individual SF waveforms. Since SAR platform motion prevents

perfect combination of the individual SF waveform ambiguity surfaces (Sec. 6.4.2)

minor noise-like effects creep into the imagery. These effects are quantified in the

next section.

Figures 7.28 and 7.29 show similar results for images of scatterer 8. These images

were formed by processing the same simulation data with different matched filter
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Figure 7.26: LFM image of scatterer 5 for va = 200 m/s (40.0 dB dynamic
range). Scatterer 5 is well focused at image center. Other scatterers alias into
the image.
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Figure 7.27: SF shuffled circulant image of scatterer 5 for va = 200 m/s
(40.0 dB dynamic range). Aliasing artifacts have been mitigated.
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Figure 7.28: LFM image of scatterer 8 for va = 200 m/s (40.0 dB dynamic
range). Scatterer 8 is well focused at image center. Other scatterers alias into
the image.

parameters (corresponding the range and Doppler of scatterer 8 instead of scatterer

5). The true scatterer response has been rotated due scatterer 8’s non-zero θ angle.

7.6.2.2 Performance Metrics. In addition to the qualitative compari-

son of simulated SAR imagery, it is also important to quantify anti-aliasing technique

effectiveness. A normalized energy metric performs this quantification. The simulator

was used to produce a series of “ideal” images containing only one scatterer at a time.

The unnormalized ideal image energy was calculated by summing over pixel values in

the final ideal image (i.e., the squared magnitude of the complex matrix generated by

the back-projection algorithm). This value was then used to normalize the energies
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Figure 7.29: SF shuffled circulant image of scatterer 8 for va = 200 m/s
(40.0 dB dynamic range). Aliasing artifacts have been mitigated.
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Table 7.4: Normalized 2-D monostatic SAR image
energy.
Waveform Scatterer Figure Energy Reduction

Ideal 5 - 1.0000 -
LFM 5 7.26 3.7155 -

SF shuffled 5 7.27 1.0002 99.99%
Ideal 8 - 1.0000 -
LFM 8 7.28 3.6639 -

SF shuffled 8 7.29 1.0004 99.98%

of both the LFM and SF shuffled circulant images, giving the results presented in

Table 7.4.

As depicted in Table 7.4, the LFM waveform results in a significant increase in

normalized image energy over the ideal case. With eight aliased artifacts, one might

expect a normalized energy of 9.0. However, the non-zero energy contributions of the

-40.0 dB image floor reduce this value. In both the scatterer 5 and scatterer 8 images,

the SF shuffled approach eliminates virtually all aliased artifact energy (defined as

normalized energy minus one). Performance in the va = 100 m/s case, where low-level

noise-like pixels are not observed, is even better.

7.7 Summary

This chapter developed and demonstrated a 2-D monostatic point scatterer sim-

ulation of the anti-aliasing technique. Using complex envelope notation, both LFM

and SF waveform simulations in one and two dimensions were presented. The simu-

lation parameters came from relevant the Global Hawk and WAM-SAR specifications

outlined in Chapter II. The LFM simulation results clearly illustrate the aliasing

artifact problem, clouding 1-D range profiles and 2-D SAR images with excess en-

ergy. SF simulation results remove these artifacts, restoring pristine range profiles

and imagery. The chapter also quantifies anti-aliasing technique performance using

an energy metric, demonstrating how more than 99% of the aliased energy is elimi-
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nated. Appendix D contains the point scatterer simulation code used to obtain the

2-D simulation results. These simulation results are independently verified in [92].
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VIII. 3-D Monostatic and Bistatic Anti-Aliasing

The anti-aliasing technique introduced in Chapter VI and simulated in Chap-

ter VII assumed a Two-Dimensional (2-D) monostatic data collection geome-

try. However, successful Wide-Angle Multistatic Synthetic Aperture Radar (WAM-

SAR) implementation requires extension of the anti-aliasing technique to a Three-

Dimensional (3-D) bistatic geometry.

Chapter VI showed how coherently combining a series of Stepped-Frequency

(SF) waveform echoes with appropriately chosen subpulse frequency orders yields a

2-D |sinc(·)|2 ambiguity function |χ(te, fe)|2. Figure 8.1 illustrates the central region

of this ambiguity function for an SF waveform collection.

The technique’s ability to remove aliased energy comes from the persistent nulls

at key Doppler values. Buried within this approach is the implicit assumption that

an aliasing artifact’s Doppler shift fd is not a function of g, the ground range1. Ana-

lytically, this assumption is expressed as

∂fd

∂g
= 0. (8.1)

As the following development shows, this assumption is valid in the 2-D monostatic

case but invalid in the general 3-D monostatic/bistatic case. None-the-less, the vio-

lation of (8.1) is not so severe as to preclude aliasing artifact mitigation in militarily

significant 3-D monostatic/bistatic scenarios.

This chapter begins by deriving the Doppler shift fd for an arbitrary 3-D bistatic

scenario. It then evaluates anti-aliasing performance under 3-D monostatic and 3-D

bistatic conditions. These evaluations are performed using a 3-D version of Chap-

ter VII’s point scatterer simulator. The simulation results, including both simulated

SAR images and normalized energy calculations, demonstrate effective anti-aliasing

performance despite violation of (8.1).

1Ground range measures the distance between the platform and scatterer projections into the
xy-plane (see Fig. 3.2). This assumption could also be expressed using the true range (i.e., slant
range) r, but the 2-D image plane figures in this chapter make use of g more convenient.
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a 2-D |sinc(·)|2 function with nulls of depth greater than -50.0 dB.
Reprinted from Fig. 6.7.
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8.1 Bistatic Doppler Shift

Examination of 3-D bistatic anti-aliasing requires an appropriate expression for

Doppler shift. This section derives such an expression from first principles.

Basic kinematics states distance x equals rate v times time t

x = vt. (8.2)

Algebraic manipulation of (8.2) gives

1

t
=

v

x
. (8.3)

For an ElectroMagnetic (EM) wave propagating in free space, the velocity v is simply

c, the speed of light. Choosing the distance x equal to one wavelength λ, the term 1/t

represents frequency f (i.e., the number of wavelengths per second). Equation (8.3)

can therefore be rewritten as

f =
c

λ
. (8.4)

If an EM wave propagates directly from a transmitter to a receiver, the frequency

measured by the receiver fm is determined not only by the wave’s original frequency

f , but also by the relative velocity vr between the transmitter and receiver

fm =
c + vr

λ
. (8.5)

Doppler shift is calculated as the difference between the measured and transmitted

frequencies

fd = fm − f =
vr

λ
. (8.6)
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In radar applications, EM waves propagate from the transmitter to a scatterer and

then to the receiver2. The existence of two propagation legs means the Doppler shift

is composed of two terms

fd =
vTXr

λ
+

vRXr

λ
, (8.7)

where vTXr is the relative velocity between the transmitter and scatterer and vRXr is

the relative velocity between the receiver and scatterer.

Assuming the scatterers are stationary, Chapter V’s arbitrary 3-D bistatic ge-

ometry can be used to determine relative velocities vTXr and vRXr . Figure 8.2 illus-

trates this geometry. The unit vectors ūTX and ūRX point from scene center to the

transmitter and receiver, respectively. Analytically they are defined as

ūTX =











cos(θTX) cos(φTX)

sin(θTX) cos(φTX)

sin(φTX)











(8.8)

and

ūRX =











cos(θRX) cos(φRX)

sin(θRX) cos(φRX)

sin(φRX)











, (8.9)

where (θTX, φTX) and (θRX, φRX) are the azimuth/elevation angles from the scene

center to the transmitter and receiver. Combining these unit vectors with v̄TX and v̄TX,

the 3-D cartesian velocity vectors for the transmitter and receiver, allows calculation

of vTXr and vRXr via

vTXr = −v̄TX · ūTX (8.10)

and

vRXr = −v̄RX · ūRX, (8.11)

2EM waves can also bounce between multiple scatterers before reaching the receiver. This situa-
tion is known as multipath. As long as the scatterers have similar velocities, the Doppler effects of
multipath are minor and can be ignored.
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Figure 8.2: 3-D bistatic SAR/ISAR collection geome-
try. The unit vectors ūTX and ūRX point from the scene
center towards the transmission and reception platforms,
respectively. The bistatic angle β between these two vec-
tors is bisected by the unit vector ūb. Reprinted from
Fig. 5.1.

where · denotes the dot product. The negative signs in (8.10) and (8.11) account

for the fact that ūTX and ūRX are defined relative to scene center, while the Doppler

shift fd is defined relative to the transmitter/receiver locations. Using the preceding

analysis, the final 3-D bistatic Doppler shift equation is

fd = −1

λ
(v̄TX · ūTX + v̄RX · ūRX) . (8.12)

The remainder of the Chapter demonstrates the anti-aliasing technique’s abili-

ties and limitations in 3-D monostatic and bistatic scenarios. Table 8.1 lists critical

parameters for the four simulation cases: 2-D monostatic (Sec. 8.2.1), 3-D monos-

tatic (Sec. 8.2.2), 3-D passive bistatic (Sec. 8.3.1), and 3-D circular-orbit multistatic

(Sec. 8.3.2). Each row lists the transmit/receive locations and scene center in units of

(km,km,kft). Platform velocity vectors v̄TX and v̄RX are in m/s. The ground range to

scene center gc is in km, while the Doppler shift to scene center is in Hz. In bistatic
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Table 8.1: 3-D Simulation parameters. Each row denotes a different scenario:
2-D monostatic (from Sec. 7.6), 3-D monostatic, passive bistatic, and multistatic,
respectively.

TX loc. RX loc. v̄TX v̄RX Scene Center gc fdcSection
(km,km,kft) (km,km,kft) m/s m/s (km,km,kft) km Hz

8.2.1 (0,0,0) (0,0,0) [0, 200, 0]T [0, 200, 0]T (0,85.5,0) 50 0

8.2.2 (0,0,60) (0,0,60) [0, 200, 0]T [0, 200, 0]T (0,85.5,0) 50 0

8.3.1 (-50,30,60) (0,0,20) [0,−50, 0]T [0, 200, 0]T (0,30,0) 77.2 472

8.3.2 (50,50,60) (0,0,60) [200, 0, 0]T [0, 200, 0]T (0,50,0) 50 0

geometries

gc =
1

2
(gTX + gRX) , (8.13)

where gTX and gRX are the ground ranges denoting distance between the scene center

and the transmitter and receiver, respectively. Unless otherwise stated, the general

simulation parameters such as frequency, Pulse Repetition Frequency (PRF), etc., are

identical to the va = 200 m/s case from Table. 7.2. Scatterer location and number

vary somewhat since the changing data collection geometries also change the spatial

locations of points which alias into the SAR images.

8.2 Monostatic Scenarios

The scenario in Chapter VI assumed a 2-D monostatic Synthetic Aperture Radar

(SAR) platform traversing a linear flight path in the +y-direction with velocity va.

Allowing the platform a non-zero height z, the 3-D monostatic Doppler shift seen by

the receiver is

fd = −2

λ











0

va

0











·











cos(θTX) cos(φTX)

sin(θTX) cos(φTX)

sin(φTX)











= −2va sin θTX cos φTX

λ
. (8.14)

The anti-aliasing technique assumes

∂fd

∂g
= 0, (8.15)
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Examining this assumption in the 3-D monostatic scenario requires evaluating

∂fd

∂g
= − ∂

∂g

2va sin θTX cos φTX

λ
. (8.16)

Assuming a planar scene, the elevation angle φTX may be calculated via

φTX = tan−1

(

z

g

)

, (8.17)

where z is the platform height above the ground plane and g is the ground range.

Substituting (8.17) into (8.16) gives

∂fd

∂g
= − ∂

∂g

2va sin θTX

λ
cos

[

tan−1(z/r)
]

. (8.18)

Since azimuth angle θTX is not dependent on ground range g, the partial derivative

can be pulled through the first term of (8.18),

∂fd

∂r
= −2va sin θTX

λ

∂

∂r
cos

[

tan−1(z/r)
]

. (8.19)

Substituting a = tan−1(z/g) and applying the chain rule gives

∂fd

∂g
=

2va sin θTX

λ

∂

∂a
cos a

∂

∂g
tan−1(z/g). (8.20)

Substituting b = z/g and applying the chain rule again gives

∂fd

∂g
=

2va sin θTX

λ

∂

∂a
cos a

∂

∂b
tan−1 b

∂

∂g

(

z

g

)

. (8.21)

Evaluating the partial derivatives yields

∂fd

∂g
=

(

2va sin θTX

λ

)

(− sin a)

(

1

1 + b2

)(

− z

g2

)

. (8.22)
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Replacing the substituted terms results in

∂fd

∂g
= −2va sin θTX sin [tan−1(z/g)]

λ

(

z

g2 + z2

)

. (8.23)

Equation (8.23) represents the variation in Doppler as a function of ground range for

a 3-D monostatic scenario. When z = 0 (i.e., the 2-D monostatic case), ∂fd/∂g = 0.

Despite (8.23)’s non-zero value in the 3-D monostatic case, anti-aliasing performance

is still quite good. Section 8.2.2 illustrates this fact.

8.2.1 2-D Monostatic Scenario. Figure 8.3 illustrates the relationship be-

tween Doppler shift fd and ground range g for the 2-D monostatic simulation scenario

introduced in Sec. 7.6.2. Tables 7.2 and 7.3 contain the relevant simulation parame-

ters. The remainder of this chapter contains many figures similar to Fig. 8.3, meriting

an in-depth discussion of the information portrayed.

Figure 8.3 is a 2-D image domain plot covering an area of 400 km2. The white

star at (0, 0) denotes instantaneous SAR platform location. Using the monostatic

platform velocity v̄TX = v̄RX = [0, 200, 0]T, (8.12) is used to calculate the Doppler

shift of each point (x, y). Each pixel’s value v is then calculated according to

v = 20 log10

[

sinc

(

fd − fdc

PRF

)]

, (8.24)

where fdc is the Doppler shift at the scene center. Equation (8.24) uses the expected

shuffled SF waveform ambiguity function to apply a One-Dimensional (1-D) |sinc(·)|2

function across the scene’s normalized instantaneous Doppler shift. This operation

maps the expected Doppler nulls onto the 2-D spatial domain ground plane allowing

the user to view variations in null location as a function of ground range, thereby

providing a visual representation of ∂fd/∂g.

The maximum v value (0.0 dB) occurs when the scene center’s Doppler shift

equals the pixel’s Doppler shift (i.e., fdc = fd). Points (x, y) meeting this criteria are

denoted by the dotted white line running horizontally through the image. The white
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Figure 8.3: Plot of (8.24) for the 2-D monostatic scenario (40.0 dB dynamic
range). The white star at (0, 0) indicates platform location. The white box
at (87.5, 0) denotes the scene center. The white circles mark aliasing artifact
locations. The dotted white line shows points where fd = fdc . The dotted
black circle shows points of equal ground range ggc . The dotted black lines
denote ∆θ = 90◦ beam edges. The radial null pattern indicates ∂fd/∂g = 0.
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radial streaks are nulls resulting from fd − fdc values equal to non-zero integer PRF

multiples.

The scene center (scatterer 5), indicated by the white square, is at (87.5, 0).

Scatterer 5’s broadside location dictates a Doppler shift of fdc = 0. The other (aliased)

scatterers are denoted by white circles. The dotted black circle defines the set of points

where ground range g equals the range to the scene center gc. The intersections of this

circle and the dotted white line indicate the two points where g = gc and fd = fdc . The

right-hand point (87.5, 0) is the scene center. The left-hand point (−87.5, 0) aliases

into the image regardless of the processing method used. This aliasing point results

from the left-right ambiguity inherent in all SAR systems (Fig. 7.18). It is removed by

assuming a finite (though still very wide) beam. The two dotted black lines extending

from (0, 0) to (±100, 100) denote the beamwidth ∆θ = 90◦. Everything outside these

lines is filtered out by the antenna’s amplitude pattern. Alias-free images can be

formed anywhere inside these lines, given appropriate range swath ∆R = Rmax−Rmin

selection.

The messages conveyed by Fig. 8.3 are two fold. First, aliasing artifacts have

been placed at all possible aliasing locations, as defined by the intersection of the

g = gc circle, the ∆θ = 90◦ beamwidth, and the nulls resulting from (8.24). As shown

by the simulation results (see Figs. 7.26 and 7.27), none of these artifacts are present

in the shuffled SF waveform image. Second, the nulls’ radial orientation demonstrates

∂fd/∂g = 0, as predicted for the 2-D monostatic case by (8.23).

8.2.2 3-D Monostatic Scenario. Having examined the 2-D monostatic case,

the simulated SAR platform was raised to an altitude of z = 60, 000 ft (near Global

Hawk’s maximum ceiling). As in the 2-D case, the velocity vector v̄TX = v̄RX =

[0, 200, 0]T and scatterer 5 (87.5, 0, 0) was again selected as scene center. Figure 8.4

illustrates how this 3-D scenario is mapped into the 2-D image domain. The instanta-

neous SAR platform location (0, 0, 60) is directly above the coordinate system origin.

The scatterers are confined to the xy plane, denoted by the grey plane. The small
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white square represents the 1 km2 image. It is centered on scatterer 5. The dotted

sphere indicates the set of points at constant range, and intersects the plane in a circle

of radius gc = 87.5 km. Points within the gray plane are evaluated according to (8.24)

for inclusion in Fig. 8.5.

Figure 8.5 provides a visual representation of ∂fd/∂g in the 3-D monostatic

case. Equation (8.24) determines individual pixel values. The white square at (87.5, 0)

denotes scene center. The 1 km2 scene contains scatterer 5. The other eight scatterers

are located at the eight white circles. These points’ locations differ slightly from the 2-

D monostatic case due to Doppler shifts caused by the non-zero platform altitude. As

before, the dotted black circle indicates points with equal ground radius gc = 87.5 km.

The dotted black lines mark off the ∆θ = 90◦ beamwidth. The white nulls indicate

points whose Doppler shifts differ from the scene center by non-zero integer PRF

multiples. The black “figure-eight” is explained in the following paragraphs.

The curvature in Fig. 8.5’s nulls demonstrates ∂fd/∂g 6= 0. This effect is more

severe for smaller ranges, begging the question of how big ∂fd/∂g can become without

significantly inhibiting anti-aliasing performance. In the 3-D monostatic case, this

question can be answered quantitatively using (8.23).

Equation (8.23) calculates the instantaneous change in fd as a function of g for

an image domain point (x, y, 0) observed by a SAR platform at (0, 0, z) flying va m/s

in the +y-direction. Note, θ = tan−1(y/x) and r =
√

x2 + y2. Given SAR image

dimensions of 1 km2, the maximum mismatch in ground range gm between any image

point and the scene center is approximately gm/2 = 500 m. This observation allows

estimation of the worst case Doppler mismatch fdm via

fdm = gm
2va sin θ sin [tan−1(z/r)]

λ

(

z

r2 + z2

)

. (8.25)

Being mismatched in Doppler by a frequency fdm implies certain aliasing artifacts do

not sit precisely in ambiguity function nulls. This mismatch is not problematic unless

the ambiguity function value at the mismatched point is greater then negative one
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Figure 8.4: 3-D monostatic data collection scenario. The SAR platform is
located at (0, 0, 60). Platform velocity v̄TX = v̄RX = 200ŷ m/s. The dashed
sphere denotes points at the same radius as the scene center. The intersection
of the sphere and gray ground plane forms a circle with radius g = gc. The
white square marks the 1 km2 scene being imaged (figure is not drawn to
scale).
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Figure 8.5: Plot of (8.24) for the 3-D monostatic scenario (40.0 dB dynamic
range). The white star at (0, 0) indicates the platform projection into the
ground plane. The white box at (87.5, 0) denotes the scene center. The white
circles mark aliasing artifact locations. The dashed white line (y = 0) shows
points where fd = fdc . The dashed black circle shows points of equal ground
range ggc . The dashed black lines indicate the ∆θ = 90◦ beam edges. Points
outside the black “figure-eight” denote the region where ∂fd/∂g ≈ 0, yielding
effective aliasing artifact mitigation (40.0 dB dynamic range).

253



times the image’s dynamic range. Since this dynamic range is set according to the

number of SF waveform subpulses N (Sec. 7.6), non-zero ∂fd/∂r values are acceptable

as long as

20 log10

[

sinc

(

1 − fdm

PRF

)]

< 20 log10 (1/N) . (8.26)

Using (8.25) and (8.26) it is possible to calculate the minimum ground range

g for adequate anti-aliasing performance at each angle θ. These values are indicated

by the black “figure-eight” in Fig. 8.5 and span approximately 20-40 km for the

given scenario. This span is very reasonable for the monostatic wide-angle SAR

requirements outlined in Chapter II.

Despite the effort taken to generate Fig. 8.5, a better measure of technique ef-

fectiveness comes from the simulation results. These results are presented in Figs. 8.6

and 8.7. Key simulation parameters are listed in the second row of Table 8.1. Fig-

ure 8.6 shows the SAR image obtained of scatterer 5 using traditional Linear Fre-

quency Modulation (LFM) waveforms. As in the 2-D case (Sec. 7.6.2), all nine scatter-

ers are visible. However, the shuffled circulant matrix image in Fig. 8.7 only contains

the desired scatterer.

8.3 Bistatic Scenarios

Section 8.2 derived an expression for ∂fd/∂g in a 3-D monostatic scenario.

Unfortunately, obtaining a similar expression in the bistatic case is not nearly so

straightforward. None-the-less, it is still possible to demonstrate effective aliasing ar-

tifact mitigation in the 3-D bistatic scenario using the point scatterer simulator. This

section presents simulation results for the two bistatic scenarios, demonstrating the

technique’s abilities and limitations in militarily significant bistatic data collection

geometries.

8.3.1 Stand-off Transmitter/Passive Receiver Scenario. One of the major

motivations for bistatic radar systems is the ability to perform passive target de-
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Figure 8.6: LFM image of scatterer 5 for the 3-D monostatic scenario. Alias-
ing artifacts cloud the image (40.0 dB dynamic range).
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Figure 8.7: SF shuffled circulant matrix image of scatterer 5 for the 3-D
monostatic scenario. Aliasing artifacts have been completely mitigated (40.0
dB dynamic range).
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Figure 8.8: 3-D bistatic passive receiver data collection scenario. TX plat-
form is located at (−50, 30, 60) with a velocity of v̄TX = −50ŷ m/s. RX plat-
form is located at (0, 0, 20) with a velocity of v̄RX = 200ŷ m/s. The dashed
ellipsoid denotes points at the same radius as the scene center. The intersec-
tion of the ellipsoid and the gray ground plane forms an ellipse passing through
scene center. The white square indicates the 1 km2 scene being imaged (figure
is not drawn to scale).

tection and imaging using cooperative and/or non-cooperative signals from distant

transmitters. Figure 8.8 illustrates such a scenario, using a slow (50 m/s), high alti-

tude (60,000 ft), stand-off transmitter, and a fast (200 m/s), low altitude (20,000 ft),

short range, passive receiver. The third row of Tab. 8.1 lists critical transmitter and

receiver simulation parameters. The dotted ellipsoid denotes all points with the same

range as scene center, indicated by the white square. The ellipsoid’s foci are the trans-

mit and receive platforms. The intersection of this ellipsoid and the gray xy-plane is

an ellipse consisting of all points at ground range gc from scene center.
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Figure 8.9 shows the ground plane behavior of (8.24) for the 3-D bistatic scenario

pictured in Fig. 8.8. The white stars at (−50, 30) and (0, 0) are the projections of

the transmit (TX) and receive (RX) platforms into the ground plane. The scene

contains five scatterers. The scene center is indicated by the white box at (30, 0)

while aliased scatterers are denoted by white circles. The dotted white line indicates

v = 0.0 dB values. The dotted black ellipse denotes points at ground range gc =

0.5(gTX+gRX). The dotted black lines mark edges of the intersection between transmit

and receive platform ∆θ = 90◦ beamwidths. The bistatic collection geometry has

caused a nonuniform warping of ground plane Doppler shifts, indicating ∂fd/∂g 6= 0.

Figure 8.10 shows the LFM image obtained from this 3-D bistatic collection

geometry. All five scatterers are visible, but only the true scatterer, is well focused.

The aliased scatterers are somewhat defocused according to their distance from the

scene center. Figure 8.11 illustrates the shuffled circulant matrix image. The aliasing

artifacts have been mitigated.

The true scatterer response in both Fig. 8.10 and Fig. 8.11 exhibits non-orthogonal

sidelobes. The scatterer’s sidelobes lay in the constant g and constant fd directions.

In the monostatic scenario, these directions are orthogonal, but in the generic 3-D

bistatic scenario they are not. This behavior is another consequence of ∂fd/∂g 6= 0.

8.3.2 Multistatic Circular-Orbit Scenario. The final case under examination

is a multistatic circular-orbit scenario where two high altitude, fast moving platforms

fly circular orbits over a scene. Each platform can process its own waveform echoes (3-

D monostatic) as well as echoes from the other platform (3-D bistatic). This section

examines the 3-D bistatic component of this multistatic scenario.

Figure 8.12 depicts the circular-orbit 3-D bistatic scenario. The scene center

(50, 50, 0) is broadside of both platforms at a ground range of 50 km. Six aliasing

artifacts are also present. Figure 8.13 shows the behavior of the warped Doppler fields

along the ground plane. The intersection of the ∆θ = 90◦ transmit and receive beams

forms a channel running toward the lower right-hand image corner. This channel
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Figure 8.9: Plot of (8.24) for the 3-D bistatic passive receiver scenario (40.0
dB dynamic range). The white star at (−50, 30) indicates the TX platform
projection into the ground plane. The white star at (0, 0) indicates the RX
platform projection into the ground plane. The white box at (30, 0) denotes the
scene center. The white circles mark aliasing artifact locations. The dashed
white line shows points where fd = fdc . The dashed black ellipse shows points
of equal ground range ggc . The dashed black lines denote ∆θ = 90◦ beam edges.
The warped Doppler behavior results from the bistatic collection geometry
(40.0 dB dynamic range).
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Figure 8.10: LFM image for 3-D bistatic passive receiver scenario. Aliasing
artifacts cloud the image (40.0 dB dynamic range).
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Figure 8.11: SF shuffled circulant matrix image for the 3-D bistatic passive
receiver scenario. Aliasing artifacts have been completely mitigated (40.0 dB
dynamic range).
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Figure 8.12: 3-D multistatic circular-orbit data collection scenario. TX plat-
form is located at (50, 50, 60) with a velocity of 200 m/s in the +x-direction.
RX platform is located at (0, 0, 60) with a velocity of 200 m/s in the +y-
direction. The dotted ellipsoid denotes points at the same radius as the scene
center. The intersection of the ellipsoid and the gray ground plane forms an
ellipse passing through scene center. The white square indicates the 1 km2

scene being imaged (figure is not drawn to scale).

is indicated by the dashed black lines. At the scene center, the constant Doppler

direction (dashed white line) and constant range direction (dashed black ellipse) are

orthogonal. This fact is not true at the aliased scatterer locations, as indicated by

the curved white nulls running through the white circles.

Figure 8.14 shows the LFM image. The true scatterer is well focused. The

other six aliased scatterers are defocused. Figure 8.15 illustrates the shuffled circulant

matrix result. The majority of aliasing artifact energy has been eliminated, but for the

first time, one artifact is not completely removed. The low level pixels at (−400,−250)
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Figure 8.13: Plot of (8.24) for the 3-D bistatic circular-orbit scenario (40.0
dB dynamic range). The white star at (50, 50) indicates the TX platform
projection into the ground plane. The white star at (0, 0) indicated the RX
platform projection into the ground plane. The white box at (50, 0) denotes the
scene center. The white circles mark aliasing artifact locations. The dashed
white line shows points where fd = fdc . The dashed black ellipse shows points
of equal ground range ggc . The dashed black lines denote ∆θ = 90◦ beam edges.
The warped Doppler behavior results from the bistatic collection geometry
(40.0 dB dynamic range).
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Figure 8.14: LFM image for the 3-D bistatic circular-orbit scenario. Aliasing
artifacts cloud the image (40.0 dB dynamic range).

demonstrate null depth is marginally less the 40.0 dB required by the image’s dynamic

range.

The presence of a small amount of aliasing artifact energy at (−400,−250) is not

a major cause for concern. According to the basic simulation parameters in Table 7.2,

these SAR images were produced using only L/va = 1 s of simulated data. The true

WAM-SAR approach will have integration times measured in minutes, not seconds

(Sec. 2.2.2). During this additional integration time, the aliased artifact responses

exhibit much more severe defocusing due to the larger variation in range between the

true scatterer and aliased scatterers. This additional defocusing reduces the aliased

response amplitude and should push the remaining artifact energy beneath the image’s

-40.0 dB floor.
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Figure 8.15: SF shuffled circulant matrix image for the 3-D bistatic circular-
orbit scenario. Aliasing artifacts have been mitigated (40.0 dB dynamic range).
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One additional feature of Figs. 8.14 and 8.15 merits mention. In all previous

simulation images, the range and cross range resolutions were approximately equal.

However, in Figs. 8.14 and 8.15, the range resolution, defined along a line from the

upper left-hand to lower right-hand image corners, is noticeably degraded. This degra-

dation is due to the large bistatic angle β used in the data collection scenario. The

bistatic angle β can be calculated via the dot product definition

ūTX · ūRX = |ūTX||ūRX| cos β. (8.27)

Using the relevant simulation parameters, solving (8.27) for the bistatic angle yields

β = 83.2◦. Recall from Chapter V, 4.0 dB range resolution δr can be calculated

via (5.32)

δr =
c

2B cos(β/2)
. (8.28)

Using β = 83.2◦, the range resolution increases by a factor of cos(β/2) = 1.34. This

result is consistent with the degraded range resolution observed in Figs. 8.14 and 8.15.

8.4 Aliasing Artifact Energy Reduction

As in Chapter VII, the 3-D anti-aliasing results can be quantified using a nor-

malized energy metric. The “ideal” image contains only the true scatterer located at

the scene center. The presence of aliasing artifacts increases the total image energy

and provides a quantitative measure of anti-aliasing performance. The unnormalized

ideal image energy was calculated by summing over pixel values in the final ideal

image (i.e., the squared magnitude of the complex matrix generated by the back-

projection code). This value was then used to normalize the energies of both the

LFM and shuffled circulant matrix images, giving the results presented in Table 8.2.

The first three rows of Table 8.2 repeat the first three rows of Tab. 7.4 for

convenience. These rows illustrate anti-aliasing performance in the 2-D monostatic

scenario. Virtually all of the extraneous energy is filtered out of the “shuffled” image.

The next three rows contain data from the 3-D monostatic scenario. Although the
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Table 8.2: Normalized 3-D monostatic/bistatic SAR image energy.
Scenario Waveform Figure Energy Reduction

2-D Monostatic Ideal - 1.0000 -
2-D Monostatic LFM 7.26 3.7155 -
2-D Monostatic Shuffled 7.27 1.0002 99.99%
3-D Monostatic Ideal - 1.0000 -
3-D Monostatic LFM 8.6 3.8508 -
3-D Monostatic Shuffled 8.7 1.0012 99.96%

Passive Receiver Bistatic Ideal - 1.0000 -
Passive Receiver Bistatic LFM 8.10 2.1960 -
Passive Receiver Bistatic Shuffled 8.11 0.9988 100%
Circular-Orbit Bistatic Ideal - 1.0000 -
Circular-Orbit Bistatic LFM 8.14 3.1874 -
Circular-Orbit Bistatic Shuffled 8.15 1.0002 99.99%

reduction percentage is slightly smaller, technique performance is still excellent. The

third set of rows appears somewhat strange, showing a “shuffled” image with less

energy than its “ideal” counterpart. Since the shuffled SF waveform definition pro-

cedure relies on a random process, tiny variations creep into final image pixel values.

These random variations may be the cause of this result. Also note, this image had

substantially less aliased energy to eliminate since only four aliasing artifacts were

present. Whatever the cause, aliasing artifact energy is clearly mitigated. The fi-

nal three rows of Tab. 8.2 show artifact mitigation performance in the circular-orbit

bistatic scenario. Again, energy reduction is virtually perfect. Note, Fig. 8.15 did con-

tain a tiny amount of residual energy near (−400,−250), but these pixels contribute a

negligible amount of aliasing energy. Taken together with the simulated SAR images,

Tab. 8.2 demonstrates excellent aliasing artifact mitigation in 3-D monostatic/bistatic

scenarios, despite the fact ∂fd/∂g 6= 0.

8.5 Summary

The anti-aliasing technique introduced in Chapter VI and simulated in Chap-

ter VII mandated a 2-D monostatic data collection geometry. However, WAM-SAR

requires a more general treatment. This chapter extended the technique first to 3-D
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monostatic and finally to 3-D bistatic geometry. It began by illustrating how alias-

ing artifact Doppler behavior in 3-D scenarios violates one of the basic anti-aliasing

technique assumptions. Despite this violation, point scatterer simulation examples in

both 3-D monostatic and 3-D bistatic geometries show excellent performance. Nor-

malized image energy calculations support this claim. The chapter also included a

quantitative tool to estimate performance limits in a 3-D monostatic scenario. In ad-

ditional to anti-aliasing technique validation, the simulation results also demonstrated

the bistatic range resolution losses predicted by Chapter V.
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IX. Complex Target Validation: Methodology & Results

Theoretical derivation of the anti-aliasing technique (see Chapter VI) is built

around the ambiguity function concept. The ambiguity function |χ(te, fe)|2 is

defined as (6.24)

|χ(te, fe)|2 =

∣

∣

∣

∣

∫ ∞

−∞

x(t)x∗(t + te) exp(j2πfet)dt

∣

∣

∣

∣

2

, (9.1)

where x(t) represents the transmitted waveform and the superscripted ∗ denotes the

complex conjugate. This equation calculates the matched filter’s output magnitude

for an ideal point target, mismatched in delay and frequency by time mismatch error

te and frequency mismatch error fe, respectively.

The ambiguity function definition inherently assumes the scene consists of ideal

point scatterer targets. This assumption was used to build the simulator in Chap-

ter VII. Unfortunately, real targets do not typically respond as ideal point scatterers.

They are often both complex (i.e., composed of more than one dominant scatterer

within a resolution cell) and distributed (i.e., total target extent exceeds a resolution

cell), especially for high resolution radar imaging applications. Under these circum-

stances, a waveform’s ambiguity function or auto/cross-correlation properties might

not accurately reflect the true target response. This fact necessitates examination of

diverse waveform effects on complex/distributed targets.

Radar Cross Section (RCS) chambers are one popular way of characterizing

real target scattering characteristics. Calibrated RCS chamber data provides the tar-

get response to far-field illumination in a free-space environment at a fraction of the

cost/complexity associated with data collected by operational radar systems. As dis-

cussed in Chapter IV, many modern RCS chambers operate by transmitting a series

of relatively long, single-frequency pulses and measuring the target response at a pre-

determined range delay corresponding to the target center. The pulsewidth τ is made

sufficiently long for the transmitted pulse to cover the entire target simultaneously.

This requirement ensures the target response characteristics are identical to those
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of a Continuous Wave (CW) radar [73]. This CW illumination means only a single

complex sample is necessary to represent the target response to a given frequency

at a given orientation angle. Generation of One-Dimensional (1-D) range profiles

and Two-Dimensional (2-D) Inverse Synthetic Aperture Radar (ISAR) images is then

accomplished using Fourier Transforms (FTs) and/or other related techniques [28].

Most RCS chambers have limited waveform generation capability. Furthermore,

the filtered output data represents the target’s spatial frequency response and is es-

sentially waveform independent. This independence means that while RCS chambers

can characterize the complicated scattering mechanisms of real targets, they have

very limited capability for studying diverse waveform effects on these targets.

This chapter proposes a technique for using RCS chamber spatial frequency data

to generate high quality approximations of raw (unmatched filtered) time-domain

waveform echoes. With such data it becomes possible to study Stepped-Frequency

(SF) waveform response to complex and/or distributed targets without the added

difficulty and expense of generating actual SF waveforms. After validating the data

conversion technique, this chapter demonstrates the desired SF waveform Doppler

filtering properties using high-fidelity Xpatch simulation data generated by the Air

Force Research Laboratory (AFRL) and ISAR data from the Air Force Institute of

Technology’s (AFIT’s) RCS chamber. These results validate the anti-aliasing tech-

nique for complex/destributed targets.

9.1 Stepped-Frequency Waveform Review

Recall from Chapter VI, SF waveforms are formed by concatenating a series

of N single-frequency sinusoidal subpulses. Each subpulse has a duration τs giving

the complete SF waveform a duration of τ = Nτs. Each of the N subpulses has a

unique frequency fn. These frequencies are uniformly spaced by a frequency difference

δf and span a total 4.0 dB bandwidth of B = Nδf . Analytically, the complete SF

270



transmitted waveform wTX(t) can be written as (see (6.25))

wTX(t) =
N−1
∑

n=0

rect

(

t − nτs

τs

)

exp(j2πfnt), (9.2)

where rect(·) is defined as

rect(t) =







1 : − τs

2
≤ t < τs

2

0 : otherwise.
(9.3)

From FT theory, it is well known that finite subpulse duration effectively spreads indi-

vidual subpulse bandwidth. This effect determines the required relationship between

B, τ , and N given by (6.27)

Bτ = N2. (9.4)

While frequency spacing is tightly controlled by (9.4), any subpulse frequency or-

der is valid. By arranging the subpulse frequencies in a monotonically increasing or

decreasing order, the SF waveform provides a good approximation to a Linear Fre-

quency Modulation (LFM) chirp. By randomizing the frequencies, a more noise-like

frequency-hopped waveform is produced.

9.2 Waveform Generation Technique

The expected radar echo for a CW single-frequency waveform is simply an ap-

propriately delayed copy of the transmitted waveform scaled by the complex In-phase

and Quadrature (I/Q) sample measured in the RCS chamber. This observation is

key to the waveform generation technique since an SF waveform (which cannot be

produced by the RCS chamber radar) is simply a concatenated collection of finite

duration single-frequency subpulses. Provided the temporal extent of the target τt

is much less than duration of a subpulse τs, the SF waveform echo’s instantaneous

complex-valued amplitude is essentially determined by the CW I/Q value measured

in the standard data collection process.

271



− τs

2
τs

2
0

τs − τtτt

subpulse n − 1 subpulse n subpulse n + 1

subpulse n − 1 subpulse n subpulse n + 1

CW illumination

Raw SF Waveform

Target Back Echo

Target Front Echo

Figure 9.1: SF waveform generation principle. Horizontal axis is time. Bottom
row denotes echo timing off target front (subpulse width τs). Middle row denotes
echo timing off target back (target extent τt). Top row denotes raw SF waveform
generated by the technique. White regions indicate where the single-frequency
CW illumination assumption is valid.

Figure 9.1 illustrates this principle. The majority of the desired raw SF wave-

form echo (top line) contains energy from the entire target and only one subpulse

frequency, indicating complex echo amplitude is determined by the CW I/Q sample

measured during standard data collection. Regions near subpulse edges only contain

energy from part of the target as well as echoes from adjacent subpulse frequencies,

indicating the CW I/Q sample is not completely accurate in these regions. Note,

the subpulse width τs is not determined by the true pulse width used in RCS data

collection, but by (9.4).

The proposed technique’s goal is to produce an accurate raw SF waveform echo

using only CW I/Q data. Therefore, CW assumption validity relates directly to SF

waveform accuracy. The variable γ quantifies waveform accuracy. It represents the

percent of the raw SF wave for which the single-frequency CW illumination assump-
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tion is valid. It is determined by

γ =







0 : τs ≤ τt

1 − τt

τs
: τs > τt

, (9.5)

where

lim
τs→∞

γ = lim
τt→0

γ = 1, (9.6)

implying the CW illumination assumption is valid at all times for infinitely long

subpulses or infinitesimally narrow targets.

Assuming uniform subpulse frequency spacing and constant subpulse width, (9.4)

can be manipulated to obtain (see (6.28))

δf =
1

τs

. (9.7)

Converting (9.7) into units of range with r = ct/2 gives

∆rs =
cτs

2
=

c

2 δf
= N

c

2B
, (9.8)

where ∆rs is the range extent of a subpulse and c is the propagation velocity. Fre-

quency spacing also determines the alias-free target range extent ∆r ((3.27)), thus

∆r = N
c

2B
= ∆rs, (9.9)

indicating the ratio of subpulse width to target width is equal to the frequency over-

sampling ratio1, thereby determining γ.

Waveform generation technique implementation begins by building a digital

copy of the raw SF waveform wTX(t). The subpulses are ordered to form the user-

specified frequency hopping pattern. The RCS chamber data is incorporated into

1The frequency oversampling ratio is the ratio of minimum subpulse frequency spacing δf to
Nyquist frequency spacing.
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this transmitted waveform by superimposing the appropriate I/Q sample on each

subpulse. This procedure allows the received target echo wRX(t) to be written as

wRX(t) =
N−1
∑

n=0

Anrect

(

t − nτs

τs

)

exp(j2πfnt), (9.10)

where An represents the complex-valued I/Q sample at the frequency fn. Equa-

tion (9.10) assumes the CW spatial frequency value measured by the RCS chamber

radar is valid over the entire subpulse width τs. In reality, it is only valid over a

duration of τs − τt in each subpulse. Note, a range (time) offset isn’t necessary since

the chamber processing references the I/Q samples to the target mount center.

9.3 Technique Validation

This section validates the raw SF waveform generation technique in both one

and two dimensions. Comparisons between standard I/Q data processing results and

matched filtered raw SF waveforms are presented.

9.3.1 1-D Validation: Complex Range Profiles. Due to the CW nature of the

complex-valued I/Q samples, standard range profile generation pstd(r) is performed

using an Inverse Fourier Transform (IFT) (see Chapter V)

pstd(r) = F−1 [A(kr)] , (9.11)

where F−1 is the IFT and A(kr) is the set of all I/Q samples at the given orientation

angle as a function of spatial frequency kr = 4π/λ.

Calculation of the matched filtered range profile pMF(r) using the raw SF wave-

form is accomplished in a few simple steps. First, both the transmitted wTX(t) and

received wRX(t) signals are multiplied by a phase correction term

w′
TX(t) = wTX(t) exp [−j2π min {fn} t] , (9.12)
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w′
RX(t) = wRX(t) exp [−j2π min {fn} t] , (9.13)

where min {fn} is the minimum frequency collected in the RCS chamber over n ∈
{0, ..., N − 1}. This phase correction shifts the frequency band covered by the data

to the range 0 ≤ fn ≤ B and is necessary because of the inherent low-pass nature

of digital IFT methods. Matched filtering of (9.12) is performed in the frequency

domain, generating a range profile pMF(r)

pMF(r) = F−1 {F [w′
RX(r)]F∗ [w′

TX(r)]} , (9.14)

where F denotes the FT and the time t has been converted to range r using r = ct/2.

Qualitatively, the raw SF waveform echo in (9.10) is considered valid when

pstd(r) ≈ pMF(r). (9.15)

The following paragraphs introduce a quantitative metric.

To test waveform validity, data was collected on a distributed target consisting

of four vertical wires, 9.5 cm tall, embedded in a styrofoam block at the corners of a

square with 15.2 cm sides. The radar used Vertical transmit / Vertical receive (VV)

polarization and sampled the target response over frequencies 12 ≤ f ≤ 18 GHz using

δf = 30 MHz and over azimuth angles −45◦ ≤ θ ≤ 45◦, spaced by δθ= 0.45◦. This

produced a square data matrix with 201 complex-valued frequency samples at each

of the 201 azimuth locations [90].

Figure 9.2 shows a comparison of normalized |pstd(r)| (solid line) and |pMF(r)|
(dotted line) results at an arbitrary azimuth angle. The subpulse frequency order was

randomized to generate a noise-like frequency hopped SF waveform. The results are

virtually identical across the entire target range.

Figure 9.3 illustrates a comparison of the phase for the two range profiles de-

picted in Fig. 9.2. The phases are essentially equal at r = 0 and begin to degrade away

target center as |r| increases. This degradation is consistent with the understanding
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Figure 9.2: Comparison of |pstd(r)| (solid line) and |pMF(r)|
(dotted line) for a single range profile. Results are virtually
identical.

that CW assumption validity is inversely proportional to target width. The actual

target width is roughly 22 cm centered about r = 0. The sharp jump at r ≈ −11 cm

occurs at the target’s front edge.

To get a more statistical sense of the technique’s validity, the magnitude and

phase errors of pMF(r) were calculated for each of the 201 azimuth samples. The

mean values of these errors are shown in Figs. 9.4 and 9.5. To test the effect of δf on

technique accuracy, the range profiles were calculated using three different δf values.

The solid lines show results from using all 201 frequency samples (δf = 30 MHz,

N = 201). The dashed lines show results after decimating the frequency samples by a

factor of two (δf = 60 MHz, N = 101). The dotted lines show results after decimating

the frequency samples by a factor of four (δf = 120 MHz, N = 51). The target width

(22 cm) and the three δf values, give γ values of 0.96, 0.91, and 0.84, respectively.

Figure 9.4 shows the mean error of |pMF(r)|. As expected, the minimum errors,

within the target extent, occur at r = 0 and rise as |r| increases. The peak errors
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Figure 9.3: Comparison of pstd(r) (solid line) and pMF(r) (dot-
ted line) phases for a single range profile. Results are virtually
identical near r = 0 and degrade as |r| increases.

occur at roughly the maximum target extent and then fall rapidly. This decrease

results from the lack of echo energy at large |r|. As expected, the errors get worse

as δf increases, causing γ to decrease. In all cases, the worst case magnitude error is

still quite small.

Figure 9.5 illustrates the mean phase error of pMF(r). The phase errors are at a

minimum near r = 0. The increase for |r| > 0 is relatively smooth within the target

extent, but becomes more oscillatory when the range falls outside the target region.

As δf increases, both the minimum error and error growth rate increase significantly.

The results presented in Figs. 9.4 and 9.5 clearly demonstrate the links between

γ and SF waveform accuracy. Based on these results, a γ ≥ 0.9 should be adequate for

the given target. The basis for this selection is the same as the far-field assumption

used to derive the quite zone’s cross range extent (Sec. 4.2). Phase errors are not

deemed significant until they reach 22.5◦ (π/8 rad) [73]. By ensuring γ ≥ 0.9, this

requirement is met with reasonably high confidence.
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Figure 9.4: Mean of normalized |pMF(r)| error over all 201
range profiles. Solid, dashed, and dotted lines denote δf = 30,
δf = 60, and δf = 120 MHz, respectively.
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Figure 9.5: Mean of pMF(r) phase error magnitude over all 201
range profiles. Solid, dashed, and dotted lines denote δf = 30,
δf = 60, δf = 120 MHz, respectively.
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Figure 9.6: ISAR image generated using traditional range pro-
files.

9.3.2 2-D Validation: ISAR Imagery. While 1-D range profiles may be

sufficient for 1-D High Range Resolution (HRR) or Moving Target Indication (MTI)

applications, validation of the anti-aliasing technique mandates the production of 2-D

ISAR images.

Figure 9.6 illustrates the unwindowed ISAR image (50.0 dB dynamic range)

obtained using standard range profiles pstd(r). The four vertical wires are clearly

visible. Sparse data in the 2-D spatial frequency domain causes the bow-tie shaped

sidelobes emanating from each wire [90].

Figure 9.7 is the image which results from processing raw SF waveforms gener-

ated from the I/Q data samples, decimated by a factor of two (γ = 0.91). As desired,

the resulting image is virtually indistinguishable from Fig. 9.6. Together, Figs. 9.6

and 9.7 illustrate SF waveform generation technique accuracy for 2-D ISAR imagery.
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Figure 9.7: ISAR image generated using SF waveforms with
random subpulse frequency order. As desired, this image
matches Fig. 9.6.
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9.4 LFM Waveform Effects

With a raw SF waveform generation technique, validated for both 1-D and 2-D

data processing, it is now possible to examine waveform dependent effects using RCS

chamber data. However, before examining the case of randomized SF waveform sets,

some well known LFM waveform effects are illustrated using data from the distributed

target introduced in Sections 9.3.1 and 9.3.2. This approach builds further confidence

in the raw SF waveform generation process, since these results conform to well known

LFM waveform effects. All data in this section has been decimated by a factor of two,

implying δf = 60 MHz, N = 101, and γ = 0.91.

9.4.1 Range-Doppler Coupling. One reason for the prevalence of LFM

waveforms is the fact they exhibit roughly uniform gain over a wide Doppler fre-

quency range, allowing HRR and MTI systems to detect targets with widely varying

Doppler shifts. Unfortunately, LFM waveforms also suffer from an effect known as

range-Doppler coupling, where large target Doppler shifts cause an apparent offset

range [116]. Using the proposed SF waveform generation technique, this effect can be

seen in the range profiles of complex and/or distributed targets.

Figure 9.8 shows the result of applying a Doppler shift of fd = 600 kHz to the

range profile of Fig. 9.2 by adding an additional exponential phase term to (9.13).

The range profile is then calculated using (9.14). The dotted line shows the true range

profile (Fig. 9.2), while the solid line indicates the range profile calculated using the

Doppler shifted target echo. The central region of the profile is shifted by an amount

ǫr where

ǫr =
τc

2B
fd = 2.55 cm, (9.16)

in accordance with the linear range-Doppler coupling relationship.

Using this Doppler offset on each range profile, it becomes possible to generate

an ISAR image of the Doppler shifted target. This result is shown in Fig. 9.9. Com-

paring this to the image of the zero Doppler target (Fig. 9.7) shows the range-Doppler
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Figure 9.8: Range-Doppler coupling effect of an LFM upchirp
on a 1-D range profile. Dotted line shows the true range profile
calculated with a matched filter. Solid line shows range profile
generated by a mismatch of fd = 600 kHz.
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Figure 9.9: Range-Doppler coupling effect of an LFM up-
chirp on a 2-D ISAR image. Defocusing is evident compared to
Fig. 9.7.

coupling caused ISAR target defocusing. This effect results from the variable target

azimuth angle θ which causes variation in the range-Doppler coupling direction.

9.4.2 Variable Chirp Direction. A second interesting waveform genera-

tion technique application is for testing waveform cross-correlation properties. One

common limitation with HRR and MTI systems is their inability to provide a large

unambiguous range swath ∆R. One technique for increasing ∆R is to transmit an

alternating sequence of LFM upchirped and downchirped waveforms [116]. If these

two waveforms were orthogonal, this technique would essentially double the maximum

allowable ∆R. However, these two waveforms are not truly orthogonal, meaning some

residual target energy remains after matched filtering target echoes with the incorrect

waveform. Using the SF waveform generation technique, it is possible to observe the

non-orthogonality of the upchirped/downchirped LFM waveform pair.
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Figure 9.10: Cross-correlation effects on a 1-D range profile.
Dotted line shows range profile generated by matched filtering
an LFM upchirp. Solid line shows range profile generated by
mismatched filtering with an LFM downchirp.

Figure 9.10 illustrates the result of applying an LFM downchirp filter to an LFM

upchirp target echo. The true matched filtered range profile (Fig. 9.2) is shown as

the dotted line, while the mismatched result is indicated by the solid line. The peak

target response has been reduced by about a factor of 10 (-20.0 dB).

Figure 9.11 shows the ISAR image generated from the coherent combination of

all 201 range profiles. While the four wires do appear at the right image coordinates,

the peak pixel value has fallen dramatically. The peak value results from the non-

coherent combination of the individual mismatch filtered range profiles. Assuming the

non-coherent target energy adds as the square root of the range profiles, the expected

peak image value, max[f(x, y)], can be estimated as

max[f(x, y)] = 20 log10

(

0.1√
201

)

≈ −43.0, (9.17)
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Figure 9.11: Cross-correlation effects on a 2-D ISAR image.
Mismatched filtering performed on LFM upchirp data using
LFM downchirp reference.

where the expected peak value of a single mismatch filtered range profile is about 0.1

(taken from Fig. 9.10). The prediction in (9.17) is very close to the true image peak

of -41.0 dB.

9.5 Xpatch Data Example

Having examined well-known LFM waveform dependent effects, it is now time

to examine the Doppler filtering properties of randomized/shuffled SF waveforms sets

on complex target data. The first data examined is high-fidelity Xpatch simulation

data. Unlike AFIT’s relatively small RCS chamber, Xpatch provides the ability to

study life-sized complex/distributed targets at X-band frequencies.

9.5.1 Data Generation and Interpolation. Xpatch is a well established tool

for modeling electromagnetic scattering from complex targets [5]. It makes use of the
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Table 9.1: Xpatch data parameters.
Parameter Value
Bandwidth, B 500 MHz
Azimuth, θ 0◦ − 110◦

Elevation, φ 0◦

Number of Azimuth Samples 1541
Number of Frequency Samples, N (original) 46
Number of Frequency Samples, N (interpolated) 250
Frequency Spacing, δf (original) 10.87 MHz
Frequency Spacing, δf (interpolated) 2.00 MHz

Shooting and Bouncing Ray (SBR) technique to model the scattering properties of

complex objects in multiple dimensions. It can use either time domain or frequency

domain methods. To spur development in electromagnetic imaging applications, the

VISUAL-D Defense Advanced Research Projects Agency (DARPA) seedling team

recently released a frequency domain Xpatch dataset providing scattering information

for a backhoe [3]. As with RCS chamber data, each complex Xpatch sample in the

backhoe dataset provides the target response to CW illumination at a given frequency

f and azimuth angle θ. For this reason, Xpatch data can be converted to raw SF

waveform echoes using the same technique developed for RCS chamber data.

In order to keep the Xpatch dataset of manageable size, the frequency domain

sample spacing δf of the original data was set very close to Nyquist. Unfortunately, for

sampling near Nyquist, τs ≈ τt implying the CW illumination assumption is invalid

for the majority of the SF echo. This problem can be corrected in a few simple steps:

1. Take the 1-D FT of the Xpatch data at a given azimuth angle.

2. Zero pad the resulting range profile by the desired amount.

3. Take the Inverse 1-D FT to obtain Xpatch data resampled at a smaller δf value.

4. Repeat for data at each azimuth angle.

This procedure takes advantage of the fact the target is strictly space-limited, using

a sinc(·) interpolator to increase the frequency domain data resolution. The key

collection parameters of the original and interpolated data are given in Table 9.1.
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Figure 9.12: Standard SAR image formed by taking the Fourier
Transform of uninterpolated Xpatch data to form range profiles and
then combining the profiles using back-projection.

9.5.2 SAR Image Results. The images in this section illustrate the Doppler

filtering properties of SF waveforms using the VISUAL-D Xpatch dataset. All images

have a dynamic range of 50.0 dB [99].

Figure 9.12 shows the Synthetic Aperture Radar (SAR) image obtained using

the original (uninterpolated) frequency domain Xpatch data. It does not use any SF

waveforms or matched filtering and is shown as a baseline for comparison. No temporal

windows were used for sidelobe control. The image contains two prominent point

scatterers at about (2,−1) as indicated by their bow-tie shaped sidelobe structure.

The radar began at the right side of the image and was swept in a counterclockwise

direction. This collection geometry explains why the top, but not the bottom, of the

backhoe is visible.

Figure 9.13 shows the SAR image obtained after mapping the interpolated

Xpatch data onto a set of SF waveforms. The subpulse frequency order was random-

ized for each waveform. The matched filter’s Doppler value was set to zero, coinciding
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Figure 9.13: SF/LFM waveform SAR image. Image is virtually iden-
tical to Fig. 9.12 demonstrating the validity of the Xpatch interpola-
tion/conversion process.

with the SF waveform echoes. As expected, the result is virtually indistinguishable

from the standard SAR image (Fig. 9.12) validating the data interpolation/conversion

process. Figure 9.13 corresponds to the target image obtained from a spotlight SAR

system using either SF or LFM waveforms. Waveform type is not important because

for a Doppler mismatch of zero, subpulse frequency order does not noticeably effect

the resulting image.

Figure 9.14 illustrates the SAR image obtained using an LFM waveform with a

Doppler mismatch equal to the Pulse Repetition Frequency (PRF). The LFM wave-

form was simulated with an SF waveform whose subpulse frequencies were ordered

in a monotonically increasing fashion, providing a discrete approximation to an LFM

upchirp. Due to the inherent Doppler tolerance of the LFM waveform, the image

appears largely unchanged despite the Doppler mismatch. Upon closer inspection,

the image shows two important effects. First, the image appears shifted slightly in

the (+x, +y)-direction. This effect is due to the inherent range-Doppler coupling ef-
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Figure 9.14: LFM waveform SAR image with Doppler mismatch
equal to the PRF. Ideally, this image should be empty. This target
aliases into the SAR image.

fects of LFM waveforms. Second, the changing azimuth angle (and thus the changing

direction of the range-Doppler coupling) causes a defocusing effect. These effects are

easiest to see by looking at the target’s point scatterers.

The true message of Fig. 9.14 is not the mild degradation in image quality, but

the fact there is an image at all. Since the Doppler mismatch is equal to the PRF, this

Doppler shifted target would alias into the true SAR image, clouding the final result.

In traditional SAR, aliasing is prevented by spatially filtering such targets using a

narrow transmit beam. However, in wide-angle SAR no such spatial filter exists.

Figure 9.15 shows the SAR image obtained using randomized SF waveforms with

a Doppler mismatch equal to the PRF. The subpulse frequency order was random-

ized for each waveform (i.e., azimuth angle). The SAR image formation routine has

effectively combined the ambiguity responses of the individual waveforms, creating a

null at the target Doppler value and filtering the aliased target out of the resulting

image. The noise-like SF waveforms also produce a low-level noise floor with peaks
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Figure 9.15: Randomized SF waveform SAR image with Doppler
mismatch equal to the PRF. Anti-aliasing technique has mitigated the
target, filtering the aliased energy out of the final image, and providing
a result approximately equal to the ideal empty image.

of approximately 20 log10(1/N) ≈ −48.0 dB [116]. The ability of the individual SF

waveform ambiguity surfaces to combine into a composite function assumes the range

profiles do not change throughout the SAR collection. Since this assumption is not

strictly correct, the composite ambiguity response is not a perfect 2-D |sinc(·)|2 func-

tion leading to the noise floor. If the Xpatch data was more finely sampled in azimuth

(as it would be for any realistic SAR collection), this effect would be reduced.

Figure 9.16 illustrates the effect of SAR image formation using a Doppler mis-

match of 1.5 times the PRF. Assuming the composite waveform’s ambiguity properties

represent a 2-D |sinc(·)|2 function, the target energy should be sitting at the peak of

a sinc(·) function’s first sidelobe, reducing its overall amplitude, but otherwise not

effecting the image (e.g., no range-Doppler coupling causing shifting and defocusing).

Since the target’s Doppler shift is not equal to an integer PRF multiple, the SAR
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Figure 9.16: Randomized SF waveform SAR image with Doppler
mismatch equal to 1.5 times the PRF. Anti-aliasing technique has re-
duced, but not eliminated, the target. However, since the Doppler shift
is a non-integer PRF multiple, the target does not alias into the final
SAR image.

image formation process automatically filters this energy out of the resulting image.

No anti-aliasing is needed.

Table 9.2 lists the mean and peak pixel values associated with the LFM and SF

waveform images in Figs. 9.13-9.16. The peak value of the SF/LFM SAR image with

no Doppler offset (Fig. 9.13) is normalized to 0.0 dB. Using 50.0 dB dynamic range,

the normalized image’s mean pixel value is -43.1 dB. Using an LFM waveform and

a Doppler offset equal to the PRF (Fig. 9.14) gives essentially the same mean value

due to the LFM waveform’s Doppler tolerance. All the target energy is still present

in the image. However, the defocusing caused by range-Doppler coupling drops the

peak image value by nearly 8.0 dB.

For the randomized SF waveform with Doppler mismatch equal to the PRF (see

Fig. 9.15), the peak image value is reduced nearly 40.0 dB. Furthermore, these peak
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Table 9.2: Xpatch SAR image metrics.
Waveform Doppler, PRF Figure Mean Value, dB Peak Value, dB
LFM or SF 0 9.13 -43.0 0

LFM 1.0 9.14 -42.9 -7.6
SF 1.0 9.15 -48.1 -38.0
SF 1.5 9.16 -47.2 -13.5

locations do not coincide with the true target location. They are simply outliers in

the random noise floor. The mean pixel value for this image is approximately equal

to 20 log10(1/N).

Finally, the SF waveform image with a Doppler mismatch of 1.5 times the PRF

(see Fig. 9.16) has a peak value of about -13.0 dB. This result is expected since the

target’s Doppler value puts it at the first sidelobe peak of a sinc(·) function. The

average pixel value is marginally higher than the -48.0 dB noise floor due to the

contribution from this sidelobe peak.

9.6 RCS Chamber Data Example

The final dataset used to validate SF waveform Doppler filtering properties is an

ISAR collection from AFIT’s RCS chamber. Unlike the Xpatch data from Section 9.5,

the results presented here are from measured data, and therefore include all scattering

mechanisms as well as thermal noise. As in the Xpatch data case, the anti-aliasing

technique performs well despite a non-ideal collection geometry.

9.6.1 Imaging Target. The ISAR imaging target is a 1:18 scale Honda Civic

model. A target photograph is shown in Fig. 9.17. The model is coated in metallic

paint to ensure all surfaces appeared opaque to the radar illumination frequencies.

Table 9.3 lists the collection parameters. Given the linear relationship between target

size and frequency scaling, the resulting ISAR images are equivalent to full sized Civic

images covering 667 ≤ f ≤ 1000 MHz [35].
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Figure 9.17: Photograph of scale Honda Civic model ISAR target.

Table 9.3: Civic data collection parameters.
Parameter Value
Frequency, f 12-18 GHz
Frequency Spacing, δf 60 MHz
Number of Frequency Samples, N 101
Azimuth, θ 0◦-359.6◦

Azimuth Spacing, δθ 0.4◦

Number of Azimuth Samples 900
Elevation, φ 0◦
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Figure 9.18: Standard back-projection ISAR image of scale Honda
Civic model. The hood is facing right, away from the monostatic an-
tenna.

9.6.2 ISAR Image Results. Figure 9.18 shows the Civic ISAR image ob-

tained through standard back-projection processing. No sidelobe control windows

were used. The target’s front (hood) is facing right, away from the monostatic radar

antenna. The image is dominated by a hollow rectangular box outlining the target.

This behavior results from the target’s symmetry and its relatively smooth surface at

the X-band illumination frequencies. The box outline’s width is determined by the

collection’s 4.0 dB range resolution δr = c/2B = 2.5 cm.

Using the RCS chamber data, it is possible to approximate the combined re-

sponse of a scene consisting of one true Civic target, and a second Civic appearing as

an aliasing artifact. This combined response is created using two versions of the I/Q

data files. The first used the true collection parameters, and the second used a new

azimuth angle θ′, where θ′ = θ + 90◦. The combined received target echo wc
RX(t) is
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then calculated via

wc
RX(t) = wθ

RX(t) + wθ′

RX(t) exp [j2πfd(t)] , (9.18)

where wθ
RX(t) is the received signal from the true Civic and wθ′

RX(t) exp [j2πfd(t)]

is the received signal from the aliased Civic, Doppler shifted by fd Hz. Since the

targets are separated by a large distance, their echoes are essentially independent.

This independence allows the composite received signal wc
RX(t) to be calculated via

superposition.

Figure 9.19 shows the ISAR image obtained using an LFM waveform to form

the combined received target echo wc
RX(t). The Doppler shift fd was set equal to the

PRF. The image contains both the true Civic image (oriented horizontally) and the

aliased Civic image (oriented vertically). The aliased Civic image is somewhat larger.

This size increase results from range-Doppler coupling. Clearly the aliasing artifact

presence inhibits proper image interpretation.

Figure 9.20 contains the ISAR image obtained using randomized SF waveforms

with wc
RX(t). The true Civic is reproduced accurately (as compared with Fig. 9.18),

while the aliasing artifact has been eliminated. As expected, a noise floor has crept

into the final image.

The mean noise floor level is higher than the expected 20 log10(1/N) ≈ −40.0

dB value. This increase is due to the large δθ value inherent in ISAR data collec-

tion. During collection of the 101 SF waveform echoes needed to fill the B × τ data

support region, the target rotates by more than 40◦. Throughout this rotation, the

range profile changes significantly, invalidating one of the assumptions used to derive

the anti-aliasing technique in Chapter VI. This rotation is much more severe than

the Xpatch example from Section 9.5 where less than 3.3◦ were swept out during

data support region filling. However, in a real airborne scenario, the support region

would be filled in a fraction of a degree, similar to the point scatterer simulations
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Figure 9.19: Fused LFM waveform images of true and aliased Civic
targets. The aliased Civic was rotated 90◦ and mismatched in Doppler
by fd = PRF. Range-Doppler coupling causes apparent expansion of
the aliased target.
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Figure 9.20: Fused SF waveform images of true and aliased Civic
targets. Aliased artifact has been removed and a low-level noise floor
has appeared.

in Chapter VII. This observation mitigates noise-floor concerns for the Wide-Angle

Multistatic Synthetic Aperture Radar (WAM-SAR) scenario.

9.7 Summary

This chapter validated Doppler filtering properties of SF waveform sets using

high fidelity Xpatch simulation data and measured RCS chamber data. Unfortu-

nately, this data was collected in the waveform independent spatial frequency domain

and therefore appears inappropriate for validated diverse waveform Doppler filtering

performance. To eliminate this problem, the chapter begins by developing a new

technique for converting waveform independent Xpatch/RCS chamber data into pre-

matched filter SF radar echoes. The resulting technique was validated in one and

two dimensions and used to demonstrate well-known LFM waveform effects including
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range-Doppler coupling. The chapter continued by using the validated data conver-

sion technique to demonstrate aliasing artifact mitigation using X-band Xpatch data

from AFRL. The peak aliasing artifact amplitude was reduced by nearly 40.0 dB.

The chapter concluded by testing anti-aliasing performance on RCS chamber data

containing both aliased and true targets. The technique removed the aliased artifact

without significantly perturbing the true target response. These results validate anti-

aliasing performance for complex targets and thus solve the second of the two major

WAM-SAR implementation problems presented in Chapter II.
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X. Conclusions

Traditional Synthetic Aperture Radar (SAR) systems operate in one of two

modes: stripmap or spotlight. stripmap mode systems produce moderate-to-

low resolution imagery of large ground patches (Sec. 3.4). They are most useful for

strategic-level reconnaissance efforts, locating buildings, terrain features, etc. spot-

light mode SAR systems produce high resolution imagery over very small regions,

providing a “soda-straw” view of specific high-interest areas (Sec. 3.5). While these

high resolution images provide very useful tactical-level intelligence, their small cov-

erage area limits their impact. Users must know a priori where they want to look.

One feature common to both stripmap mode and spotlight mode SAR is the

use of narrow radar beams, typically only a few degrees wide. Using narrow beams,

traditional SAR systems dramatically simplify the data collection and image forma-

tion processes. Narrow beams allow the user to make a host of assumptions including

plane wave (e.g., far-field) illumination, linear SAR flight paths, and planar scenes.

Narrow beams also limit the radar echo’s Doppler spread, reducing Pulse Repetition

Frequency (PRF) requirements and allowing the use of conventional antennas and

simple waveforms.

10.1 WAM-SAR

One approach for simultaneously achieving high resolution and large area cover-

age involves using extremely wide radar beams [143]. Wide transmit beams continu-

ally illuminate large ground patches providing substantial angular data diversity and

resulting in extremely high resolution imagery over the entire ground swath. Nar-

row band waveforms (Sec. 2.2.4), simultaneous SAR and Moving Target Indication

(MTI) missions (Sec. 2.2.5), and high resolution change detection (Sec. 2.2.6) may

also be possible using a wide angle SAR platform. These capabilities result in a

radar platform capable of fulfilling most major radar missions in a tactical battlefield

environment.
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Most modern radars operate in a monostatic mode, using the same antenna for

transmission and reception. Recent technology advances have made bistatic radar

systems feasible, where one radar platform transmits radar waveforms while another,

geographically separated platform, receives waveform echoes. When multiple transmit

and/or receive platforms are used, the collection is termed multistatic. Bistatic/mul-

tistatic systems have a number of advantages. They provide diverse radar data, ob-

serving targets from a number of different orientations simultaneously. This angular

diversity reduces the chance of severe target shadowing effects. Bistatic/multistatic

systems also are much less prone to Electronic Warfare (EW) attack. Jammers must

target radar receivers. If those receivers are not co-located with radar transmitters,

they are much harder to detect and engage.

In an effort to combine the benefits of wide-angle radar beams and multistatic

geometries, this research effort centered around a concept termed Wide-Angle Mul-

tistatic Synthetic Aperture Radar (WAM-SAR). While WAM-SAR advantages are

significant, substantial issues complicate implementation. Although significant work

remains to be done in the simultaneous SAR/MTI and change detection areas, demon-

strating the ability to form focused, high resolution, alias-free images is the first pri-

ority in demonstrating WAM-SAR feasibility. For this reason, this research effort

focused on these fundamental image formation issues.

10.2 Research Contribution Summary

Two major issues preclude formation of high resolution WAM-SAR imagery

using traditional SAR methods. This research effort solved both issues. Each issue

relates directly to wide-angle radar beam effects.

The first issue prohibiting WAM-SAR image formation involves the focusing

of wide-angle monostatic/bistatic data. Use of wide beams means wavefront curva-

ture is a measurable effect and must therefore be accounted for in the image forma-

tion process. Also, the long synthetic apertures used to collect radar data invalidate

the traditional linear flight path/planar scene assumptions. Chapter III provides an
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overview of SAR imaging, including an introduction to the relatively new and increas-

ingly popular spatial frequency SAR imaging paradigm. Some of the imagery/con-

cepts in Chapter III were published in [90]. Chapter IV develops data collection and

calibration procedures used to validate subsequent SAR/ISAR imaging techniques.

Data collected and calibrated using these procedures is contained in [43, 76, 86, 90].

Chapter V presents the WAM-SAR data focusing methodology. This chapter con-

tains new derivations of arbitrary Three-Dimensional (3-D) bistatic geometry effects

on SAR/ISAR data as well as derivations of wide-angle resolution and resolution-

like metrics. Measured ISAR data validates these results. More importantly, the

chapter contains an image processing approach that corrects for all three far-field

assumption components, an assumption invalidated by the wide-angle beam. Being

tomographic in nature, this approach does not rely on uniform spacing of synthetic

aperture samples, allowing arbitrary SAR flight paths. Additionally, the method’s

inherently parallel nature permits seamless incorporation of warped ground plane

information.

The second major issue precluding WAM-SAR image formation results from un-

dersampling along the synthetic aperture. The large Doppler spread in the wide-angle

radar echoes causes this undersampling, imposing an unrealistic PRF requirement. By

failing to meet this requirement, cross range (i.e., Doppler) aliasing artifacts appear

in the resulting images. Most previous SAR anti-aliasing work focused on the use of

phased array antennas to place spatial filters at aliasing artifact locations [37, 143].

While theoretically feasible, this approach mandates massive data collection, trans-

mission, and storage requirements. Additionally, the required element-level digiti-

zation of radar echoes necessitates an exceedingly expensive and complex antenna.

Chapter VI introduces the theory for a new anti-aliasing technique based on waveform

diversity methods. By using randomized Stepped-Frequency (SF) waveforms verses

traditional Linear Frequency Modulation (LFM) waveforms, a WAM-SAR platform

can produce a series of Doppler filter nulls at aliased artifact locations, mitigating

their effects in the final image [89]. This chapter also defines an SF waveform subpulse
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frequency order selection method leading to temporally orthonormal waveform sets.

Chapter VII tests the anti-aliasing technique using a custom-built point scatterer

simulator. Both One-Dimensional (1-D) and Two-Dimensional (2-D) results illus-

trate the desired effect, eliminating more than 99% of aliasing artifact energy [87–89].

These simulation results were independently verified in [92]. Chapter VIII extends

the anti-aliasing technique and simulation results to the 3-D monostatic/bistatic case.

Although these geometries violate one of the technique’s assumptions, both deriva-

tion and simulation results illustrate excellent mitigation performance for various

militarily-significant data collection geometries. As in the 2-D case, more than 99%

of the aliasing artifact energy is mitigated. Finally, Chapter IX validates SF wave-

form Doppler filtering properties using third party complex target simulation data

and measured Radar Cross Section (RCS) chamber data. It contains a new technique

for converting these data products into SF waveform echoes without needing to trans-

mit actual SF waveforms [84]. Using this approach, the anti-aliasing technique was

shown to reduce peak energy from complex aliasing targets by nearly 40.0 dB [86].

Figure 10.1 provides a graphical overview of the major research results. The

user desires a wide-angle data collection enabling simultaneous high resolution image

formation over large ground swaths. Using conventional SAR processing methods,

the wide-angle data is essentially useless. The two images under the “conventional

processing” heading illustrate this fact. The top image shows a high resolution point

scatterer image obtained from RCS chamber data (upper left-hand scattering response

in Fig. 5.16(a)). Total image area is 20 cm2. The point scatterer is defocused and

translated due to the wide-angle data collection. Application of near-field corrections

using the tomographic WAM-SAR approach results in the right-hand image (upper

left-hand scattering response in Fig. 5.16(b)). In this case, the scatterer is both better

focused and correctly located.

The lower images in Fig. 10.1 have an area of 1 km2. The left-hand “conven-

tional” image shows a well focused scatterer at the scene center and eight aliased

or varying extent artifacts (Fig. 7.26). Using WAM-SAR’s randomized SF waveform
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approach, these artifacts are mitigated in the lower right-hand image (Fig. 7.26).

Taken together, the images in Fig. 10.1 illustrate WAM-SAR’s ability to produce fo-

cused alias-free high resolution imagery over large ground swaths, encapsulating the

contributions of this research effort.

10.3 Future Research

This research demonstrates solutions to both the focused image generation and

aliasing artifact mitigation problems faced by WAM-SAR. None-the-less, these efforts

simply represent the beginning, not the end of WAM-SAR research possibilities. The

following paragraphs suggest a number of additional high interest research areas.

While the anti-aliasing technique performs very well using SF waveforms, other

waveform types are also possible. One variant involves superimposing LFM chirps

on individual SF subpulses, allowing a smaller number of subpulses covering a given

bandwidth and reducing data processing requirements [79]. At the author’s sugges-

tion, this technique was successfully demonstrated in [92]. In addition to illustrating

the desired anti-aliasing effect, the resulting waveform also lowered the imagery noise

floor, increasing the available dynamic range.

Another WAM-SAR waveform possibility is bandlimited white noise. Since

white noise uniformly covers a given frequency band, it should not be difficult to build

the required rectangular data support region, leading to alias-free images. Since the

anti-aliasing technique mandates Continuous Wave (CW) transmission, use of noise

waveforms means the WAM-SAR transmitter would act as a barrage noise jammer,

flooding the battlefield with white noise. While friendly systems could recover the

radar echoes, enemy systems would have to deal with a strong noise source. This sce-

nario makes the noise waveform approach beneficial from both offensive and defensive

EW perspectives.

Recall from Sec. 2.2.4 that while wide-angle collections allow high resolution

imaging with narrowband waveforms, ImPulse Response (IPR) function sidelobe levels
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Wide-angle data collection

Conventional

processingprocessing

WAM-SAR

Focused imagery via

near-field tomography

Anti-aliasing via

waveform diversity

Chapters III-V

Chapters VI-IX

Figure 10.1: WAM-SAR improvements over conventional processing for
wide-angle data. Conventional processing of wide-angle results in defocusing
(upper left-hand image) and aliasing (lower left hand image). WAM-SAR pro-
cessing solves both the focusing (upper right-hand image) and aliasing (lower
right-hand image) problems.
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can become quite high. These large, bowtie-shaped sidelobes are caused by the sparse,

non-uniform filling of the rectangular spatial frequency domain data support regions

(e.g., Fig. 3.8) [90]. While sidelobe control is an issue long studied in radar, it has

usually employed the narrow-angle assumption. Sidelobe control methods ranging

from amplitude windows (i.e., tapers) to spectral estimation inherently assume 1-D

or separable 2-D radar data (e.g., [38, 51, 80–82, 90]). Removing the narrow-angle

assumption is likely to generate a host of new problems and opportunities and could

substantially benefit WAM-SAR. Some preliminary work in this area is contained

in [104].

While WAM-SAR makes available both monostatic and bistatic imagery from a

number of simultaneous geometries, little research has been done on how to fuse these

separate images into a single, high quality result. A good starting place for efforts in

this area may be the polarimetric whitening filter originally developed to fuse SAR

images containing multiple polarizations [102,103].

Related to the multistatic data fusion problem is simply determining what flight

paths result in the most valuable data. Do circular orbits perform the best? What

elevation angles and bistatic angles provide the best combination of data diversity

and image resolution? Some of these ideas are addressed in [108], but much room

exists for additional research.

Finally, the variable bistatic image formation routine presented in Chapter V

may also be useful for detecting flaws in RCS coatings. This is an important applica-

tion for maintenance of stealth aircraft. Although the specular returns for a complex

target are difficult to predict, by using a fixed transmit orientation and a variable

bistatic receiver (i.e., a setup similar to AFIT’s RCS chamber), the the majority of

reflected energy could be collected. This collection and subsequent imaging might

simplify the detection and localization of changes in target RCS characteristics. A

further extension might entail placing probes directly on target surfaces, although
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this requires modification of the imaging routines to account for the non free-space

nature of the resulting data.

10.4 Final Thoughts

The data focusing and anti-aliasing methods presented in this research demon-

strate the feasibility of high resolution SAR image formation over large ground patches

using 3-D monostaic/bistatic/multistatic data collection geometries. It is the author’s

hope these results will motivate WAM-SAR concept expansion. With additional re-

search in the areas mentioned above, as well as Sections. 2.2.5 and 2.2.6, WAM-SAR

may well find its place on a future battlefield, proving a wealth of persistent real-time

high resolution SAR/MTI data spanning vast terrain swaths. The availability of such

data would enable commanders and operators alike to plan and conduct operations

in shorter time spans, with greater efficiency, and with less risk to personnel and

equipment.
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Appendix A. Fourier Transform Definitions, Properties, and Pairs

This appendix defines the 1-D and 2-D Fourier Transform (FT) operations. It

also reviews common FT properties. Information in this appendix is adapted

from [64] and is frequently referred to throughout the dissertation document.

The 1-D FT of a function f(t) is defined as

F (f) , F [f(t)] ,

∫ ∞

−∞

f(t) exp(−j2πft)dt, (A.1)

where the units of f and t are reciprocals of each other. For many signal processing

applications, t represents time in units of seconds implying f represents temporal

frequency in units of inverse seconds. For radar applications the linear transform

r =
ct

2
, (A.2)

is used to convert delay into range (c represents the wave’s propagation velocity).

This conversion allow the temporal radian frequency kr = 2πf to be rewritten as 4π/λ

resulting in a radial spatial frequency kr in units of rad/unit length. In range/spatial

frequency variables, the 1-D Fourier transform can be rewritten as

F (kr) , F [f(r)] ,

∫ ∞

−∞

f(r) exp(−jkrr)dr. (A.3)

The resulting Fourier transform F (kr) in (A.3) differs from the F (f) in (A.1) by the

scaling constant |2/c| as indicated by the scaling property in Table A.2. This constant

is normalized out to simplify the definition.

The 1-D Inverse Fourier Transform (IFT) of a function F (kr) is defined as

f(r) , F−1[F (kr)] ,

∫ ∞

−∞

F (kr) exp(jkrr)dkr. (A.4)

Since the FT is invertible, no information is lost as the functions are transformed

between the range and spatial frequency domains.
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SAR imaging forms estimates of scene reflectivity in two (or occasionally three)

dimensions, making it necessary to extend the FT definition to multiple dimensions.

The 2-D FT of f(x, y) is defined as

F (kx, ky) , F [f(x, y)] ,

∫ ∞

−∞

∫ ∞

−∞

f(x, y) exp[−j(kxx + kyy)]dxdy. (A.5)

The 2-D IFT of F (kx, ky) is defined as

f(x, y) , F−1[F (kx, ky)] ,

∫ ∞

−∞

∫ ∞

−∞

F (kx, ky) exp[j(kxx + kyy)]dkxdky (A.6)

The exponential kernel of the 2-D FT/IFT is separable. This property implies that

the 2-D FT/IFT can be computed as successive 1-D transforms along each of the

variables. This separability results from the orthogonal relationship between the x

and y axes. Extension of the FT/IFT pair to n dimensions is straightforward.

The remainder of this appendix contains a series of tables describing useful

properties and relationships which arise from the FT/IFT pair in one and two dimen-

sions. Table A.1 defines a collection of special functions and operators used within

the remaining tables. Table A.2 lists some of the important properties of 1-D FT/IFT

operations. Table A.3 extends each of these properties to two dimensions and adds

two new properties that have no meaning in 1-D FT theory. Each of these additional

properties plays an important role in SAR imaging. The rotational property states

that rotation of a function f(x, y) by an angle θ, also rotates the FT F (kx, ky) by the

same angle θ. The importance of the separability property was addressed earlier in

this appendix.
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Table A.1: Special functions and operators
Function Definition

Dirac delta δ(r) , 0, r 6= 0

limǫ→0

∫ ǫ

−ǫ
δ(r)dr , 1

Sifting Property
∫ ∞

−∞
f(r′)δ(r − r′)dr′ = f(r)

Rectangle rect
(

r
R

)

,

{

1, −R
2
≤ r < R

2

0, else

Triangle tri
(

r
R

)

,

{

1 − |r/R|, |r| ≤ R
0, else

Sinc sinc(r) ,
sin(πr)

r

Convolution f(r) ∗ g(r) ,
∫ ∞

−∞
f(r − r′)g(r)dr′

2-D Convolution f(x, y) ∗ g(x, y) ,
∫ ∞

−∞

∫ ∞

−∞
f(x − x′, y − y′)g(x, y)dx′dy′

Table A.2: 1-D Fourier transform properties
Property f(r) F (kr)
Linearity a1f1(r) + a2f2(r) a1F1(kr) + a2F2(kr)
Conjugation f ∗(r) F ∗(−kr)

Scaling f(ar) F (kr/a)
|a|

Shifting f(r ± r0) exp(±jkrr0)F (kr)
Modulation exp(±jkr0r)f(r) F (kr ∓ kr0)
Convolution g(r) = h(r) ∗ f(r) G(kr) = H(kr)F (kr)
Multiplication g(r) = h(r)f(r) G(kr) = H(kr) ∗ F (kr)

Table A.3: 2-D Fourier transform properties
Property f(x, y) F (kx, ky)
Rotation f(±x,±y) F (±kx,±ky)
Linearity a1f1(x, y) + a2f2(x, y) a1F1(kx, ky) + a2F2(kx, ky)
Conjugation f ∗(x, y) F ∗(−kx,−ky)
Separability f1(x)f2(y) F1(kx)F2(ky)

Scaling f(ax, by) F (kx/a,ky/b)

|ab|

Shifting f(x ± x0, y ± y0) exp[±j(kxx0 + kyy0)]F (kx, ky)
Modulation exp[±j(kx0x + ky0y)]f(x, y) F (kx ∓ kx0, ky ∓ ky0)
Convolution g(x, y) = h(x, y) ∗ f(x, y) G(kx, ky) = H(kx, ky)F (kx, ky)
Multiplication g(x, y) = h(x, y)f(x, y) G(kx, ky) = H(kx, ky) ∗ F (kx, ky)
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Appendix B. Bistatic ISAR Data Calibration Code

This appendix contains Matlabr code used for bistatic ISAR data calibration.

The background subtraction calibration procedure is derived in Chapter IV.

Calibration is performed by calling the function calibrate() with the appropriate

input arguments. The code then queries the user to locate the required Lintek 4000

data files.

Listing B.1: Master file governing the calibration routine.(appendix2/calibrate.m)
% function [data ] = calibrate(theta ,dia ,pol);

%

% This routine calibrates bistatic RCS chamber data. It assumes

% data collection is performed using a fixed bistatic angle. The

5 % receiver angle measurement is relative to the unit vector

% pointing in the propagation direction of the incident wave ,

% counter -clockwise rotation is positive.

%

% Inputs

10 % theta : theta angle to receiver , degrees

% dia : diameter of calibration sphere , inches

% pol : polarization , (1=HH , 2=VV , 3=HV , 4=VH)

%

% Outputs

15 % data.iq : complex IQ calibrated data

% data.freq : frequency vector , GHz

% data.az : azimuth vector , degrees

% data.pol : polarization , (1=HH , 2=VV , 3=HV , 4=VH)

% data.theta : theta angle to receiver , degrees

20 %

% data.iq is scaled such that 20* log10(abs(data.iq)) = RCS in dB

%

% Written by Jonathan E. Luminati , 2005

25 function [data ] = calibrate(theta ,dia ,pol);

root = ’Some_Screwy_String ’;

% read in the binary data for target , background , calibration , and

30 % cal background measurements

for ext = {’tar’ ’bkg’ ’cal’ ’cbk’},

[f,az ,iq ,header ] = readlintekfile ([root ’.’ char(ext)]);

az = unwrap (( round (100* az)/100)*pi /180) *180/pi;

root = header.FILENAME (1:end -4);

35 for data = {’f’ ’az’ ’iq’}

eval([char(ext) ’.’ char(data) ’=’ char(data) ’;’])

end

end

40 % replicate calibration data
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cal.iq = repmat(cal.iq(:,1) ,1,length(tar.az));

cbk.iq = repmat(cbk.iq(:,1) ,1,length(tar.az));

% determine exact.iq data using bistatic RCS calculation

45 if (pol ==1) || ( pol ==2)

exact = bistatic(dia ,pol ,tar.f*1e9 ,theta).’;

exact = repmat(exact ,1,length(tar.az));

else

disp(’WARNING : Cross -Polarization calibration not possible.’);

50 exact = 0;

end

% calibrate and save data

data.iq = exact .* ( tar.iq - bkg.iq ) ./ ( cal.iq - cbk.iq);

55 data.freq = tar.f’;

data.az = tar.az;

data.pol = pol;

data.theta = theta;

60 return

Listing B.2: File for extracting required data from Lintek output files.
(appendix2/ReadLintekFile.m)

% function [Freqs ,Angles ,IQ,Header ] = readlintekfile (filename ,...

% IEEE_type);

%

% Reads Lintek 4000 binary file. Optional arguments specify the

5 % file to read and the IEEE binary data format (big -endian or

% little -endian).

% Input:

% filename : file name

10 % IEEE_type : file type

%

% Output:

% Freqs : Frequency data , GHz

% Angles : Angular oridentation data , degrees

15 % IQ : Raw complex radar data

% Header : Header data

%

% Written by William D. Wood , 2002

% Modified by Jonathan E. Luminati , 2005

20

function [Freqs ,Angles ,IQ ,Header ] = readlintekfile (filename ,...

IEEE_type);

if nargin <2 || ~ strmatch(IEEE_type ,strvcat(’ieee -le’,’ieee -be’,’l’...

,’b’),’exact’)

IEEE_type = ’ieee -le’; % Default to AFIT range ’s format

25 end
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% Check to see if the file could be opened.

% If not , prompt for filename.

if nargin <1 || exist(filename)~=2

30 ext = filename(end -2: end);

[File ,Path]= uigetfile ([’*.’ ext], [’Radar ’ upper(ext) ’ file’...

]);

filename = [ Path File ]; % alb added 10.09.02

cd(Path);

end

35

fid = fopen(filename ,’rb’,IEEE_type);

token = ’BEGIN ’;

while ~ strcmp(token ,’END’),

40 tline = fgetl(fid);

[token ,value ] = strtok(tline);

if findstr(token ,’WAVEFORM ’) , continue , end

value=deblank(fliplr(deblank(fliplr(value))));

if sum(double(value) -47==0 | double(value) -58==0 | isletter(...

value))

45 eval([’Header.’ token ’=value;’]) % VALUE is numeric

else

eval([’Header.’ token ’=str2num(value);’]) % VALUE is a ...

string

end

end

50

fseek(fid ,4096,’bof’); % position after 4096 byte header

data=fread(fid ,inf ,’real*4’); % Read the binary data

% Put data into martrix form , each column being a freq sweep.

% Last 6 rows are the encoder packet

55 nFreq = Header.NUMFRQS0;

data = data (4* nFreq +1: end); % Strip off bkg and cal types

nAng = length(data)/(2* nFreq +6);

data=reshape(data ,2* nFreq+6,nAng);

60 Angles = data (2* nFreq +1,:);

Freqs = linspace(Header.STFRQ0 ,Header.SPFRQ0 ,nFreq)*1e-6;

IQ = data (1:2:2* nFreq ,:)+j*data (2:2:2* nFreq ,:);

return

Listing B.3: Calculates the bistatic scattered field from the calibration sphere.
(appendix2/bistatic.m)

% function [iq] = bistatic_exact (dia ,pol ,freq ,theta);

%

% Calculates the scaled ratio of scattered -to-incident E-fields

% (Es/Ei) for a sphere . It assumes the TX horn , sphere , and

5 % RX horn define the " scattering plane ." The unit vector
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% corresponding to the direction of TX propagation is defined

% along the +z direction . The unit vector corresponding to

% the linearly polarized E-field of the TX wave is defined

% along the +x direction.

10 %

% Input:

% dia : sphere diameter , inches

% pol : polariazation , 1=HH , 2 = VV , 3 = HV , 4 = VH

% freq : frequencies required , Hz

15 % theta : angle between the TX propagation vector and the RX

% propagation vector , deg.

% theta = 0 implies forward scattering

% theta = 180 implies backscatting ( monostatic)

%

20 % Output:

% iq : 2* sqrt(pi)*r*Es/Ei

%

% Coordinate systems and scattered field equations are taken from

% Harrington , "Time -Harmonic Electromagnetic Fields"

25 %

% Written by Jonathan E. Luminati , 2005

function [iq] = bistatic(dia ,pol ,freq ,theta);

30 % define speed of light , m/s

C = 3e8;

% ensure theta between 0 and 180 and then convert to radians

theta = mod(theta ,360);

35 if theta >180

theta = 360 - theta;

end

theta = theta*pi /180;

40 % ensure freq vector oriented horizontally

if size(freq ,2) ==1

freq = freq ’;

end

45 % convert sphere diameter to meters

a = dia /2*0.0254;

% set number of terms in sum

n_max = 100;

50 n = [1: n_max]’;

n_ext = [0: n_max]’;

% calculate a_n

a_n = repmat(j.^-n.*(2*n+1)./n./(n+1) ,1,length(freq));

55

% calculate k_a

k_a = 2*pi*freq/C*a;
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% get required sherical Bessel/Hankle functions

60 J_sphere = zeros(n_max+1,length(freq));

H_sphere = zeros(n_max+1,length(freq));

for i = 1: n_max+1

J_sphere(i,:) = besselj(i+0.5,k_a);

H_sphere(i,:) = besselh(i+0.5,2,k_a);

65 end

J_sphere = sqrt(pi*repmat(k_a ,n_max +1,1)/2).* J_sphere;

H_sphere = sqrt(pi*repmat(k_a ,n_max +1,1)/2).* H_sphere;

J_sphere_prime = - J_sphere (2:end ,:) + repmat(n+0.5,1, length(freq))...

./ repmat(k_a ,n_max ,1).* J_sphere (1:end -1,:);

H_sphere_prime = - H_sphere (2:end ,:) + repmat(n+0.5,1, length(freq))...

./ repmat(k_a ,n_max ,1).* H_sphere (1:end -1,:);

70

% calculate b_n

b_n = -a_n.* J_sphere_prime ./ H_sphere_prime ;

% calculate c_n

75 c_n = -a_n.* J_sphere (1:end -1,:)./ H_sphere (1:end -1,:);

% get required associated Legendre fucntions and derivatives

if theta ==pi

P_term = repmat ((-1).^n.*n.*(n+1)/2,1,length(freq));

80 P_prime_term = P_term;

else

if theta ==0

theta =0.0001;

end

85 P = zeros(n_max +1,1);

for i = 1: n_max +1

temp = legendre(i,cos(theta));

P(i)=temp (2);

end

90 P_prime_term = repmat (1/( cos(theta)^2-1)*(n.*P(2: end)-(n+1)*...

cos(theta).*P(1:end -1)) ,1,length(freq))*sin(theta);

P_term = repmat(P(1:end -1) ,1,length(freq))/sin(theta);

end

% calculate iq data

95 if pol == 1 % HH polarization

iq = j*C/sqrt(pi)./freq.*sum(repmat(j.^n,1,length(freq)).*( b_n...

.* P_prime_term -c_n.* P_term) ,1);

elseif pol == 2 % VV polarization

iq = j*C/sqrt(pi)./freq.*sum(repmat(j.^n,1,length(freq)).*( b_n...

.*P_term -c_n.* P_prime_term) ,1);

else % cross -polarization

100 iq = 0;

end
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Appendix C. ISAR Data Processing Code

This appendix contains Matlabr code used to produce orthographically correct

2-D near-field monostatic/bistatic ISAR images of targets on warped (3-D)

image planes, eliminating defocusing/layover effects. This code was used to produce

Figs. 5.21-5.22.

Listing C.1: Master file governing the image generation routine.
(appendix3/master.m)

% master.m

%

% Master file for creating 2-D orthographically

% correct images over warped (3-D) image planes

5 %

% Corrects for defocusing/layover effects.

% prepare workspace

clear all

10 close all

% load constants

constants

15 % load file

load(FILENAME)

% reduce samples to desired collection parameters

az_index = find(data.az >= min_az&data.az <= max_az);

20 freq_index = find(data.freq >= min_freq&data.freq <= max_freq);

data = struct(’iq’,data.iq(freq_index ,az_index).’,’az’,data.az(...

az_index)’,’freq’,data.freq(freq_index));

% load contour map data

load points

25

% bistatic countour image with near -feild wavefront

% curvature and ampltidue corrections

contour_image = bis_contour_NF_amp(data ,points);

Listing C.2: Constants file defining relevant parameters.(appendix3/constants.m)
% physical constants

C = 3e8; % speed of light , m/s

in2m = 0.0254; % conversion from in to m

5 % data boundries

min_az = 0; % degrees

max_az = 360; % degrees

min_freq = 12; % GHz
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max_freq = 18; % GHz

10

% number of FFT points

numFFTpts = 1024;

% view movies during image formation (0 = no , 1 = yes)

15 mov = 1;

% normalize by fixed value (0 = no , 1 = yes)

norm_on = 0;

norm_value = 69.6783; % dB

20

% TX/RX locations in polar coordinates

RX_pol = [8*12* in2m ,73*pi/180 ,0];

TX_pol = [27*12* in2m ,180*pi/180 ,0];

25 % image dimesnions

num_pixels = [128 ,128]; % number of pixels

dim_image = [ -0.3 0.3 -0.3 0.3]; % image dimensions , meters

dyn_range = 20; % dynamic range , dB

30 % filename

FILENAME = ’bis00’;

% maximum half -beamwidth for amplitude correction

% impliments pseudo -inverse instead of inverse filter

35 % to prevent excessive gain

MAX_BEAM = 20; % degrees

Listing C.3: ISAR image formation code.(appendix3/contour.m)
% function image_data = contour(data ,points);

%

% ISAR image generation code for creating 2-D

% orthographically correct images over warped

5 % (3-D) image planes.

%

% Corrects for defocusing/layover effects.

function image_data = contour(data ,points);

10

% load constants

constants;

% define k_r;

15 k_r = 4*pi/C*data.freq*1e9;

min_k_r = min(k_r);

% establish cooridnates of final image ( meters)

x_image = linspace(dim_image (1),dim_image (2),num_pixels (1));

20 y_image = linspace(dim_image (3),dim_image (4),num_pixels (2));

[X,Y] = meshgrid(x_image ,y_image);

X = X(:);
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Y = Y(:);

Z = griddata(points (:,1),points (:,2),points (:,3),X,Y,’cubic’);

25

% define the BP filter , only k_r needed since bistatic

% angle is assumed constant

H = k_r;

30 % load polynomial to correct for non -uniform antenna pattern

load P

% calculate delay values for each projection

dr = C/2/(( max(data.freq)-min(data.freq))*1e9)*( length(data.freq)/...

numFFTpts);

35 r_exact = dr*[0: numFFTpts -1];

r_exact = r_exact -mean(r_exact);

% preallocate final image variables and intialize figure window

image_data = zeros(num_pixels (2),num_pixels (1));

40 figure

% intialize waitbar

wait = waitbar(0,’Forming ISAR Image’);

45 % loop over all theta angles

for i = 1: length(data.az)

% genrate low -pass versions of projections

q = fftshift(ifft((data.iq(i,:).’).*H,numFFTpts));

50

% calculate the radii to image center

[TX_x TX_y ] = pol2cart(TX_pol (2)-data.az(i)*pi/180, TX_pol (1));

TX_z = TX_pol (3);

TX_r = sqrt(sum([TX_x TX_y TX_z ].^2));

55

[RX_x RX_y ] = pol2cart(RX_pol (2)-data.az(i)*pi/180, RX_pol (1));

RX_z = RX_pol (3);

RX_r = sqrt(sum([RX_x RX_y RX_z ].^2));

60 % calculate the required radii for the image

r_required_TX = sqrt((X-TX_x).^2+(Y-TX_y).^2+(Z-TX_z).^2);

r_required_RX = sqrt((X-RX_x).^2+(Y-RX_y).^2+(Z-RX_z).^2);

r_required = 0.5*( r_required_TX+r_required_RX -TX_r -RX_r);

65 % interpolate q to radii required by the output image

q_interp = interp1(r_exact ,q,r_required).*exp(j*min_k_r*...

r_required);

% calculate antenna pattern corrections;

% assumes pattern is separable in the el/az directions

70 A = -[ TX_x;TX_y];

B = [X’-TX_x;Y’-TX_y];

angle = acos((A’*B)./sqrt(sum(A.^2))./sqrt(sum(B.^2)))*180/pi;
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big_angle = find(angle >MAX_BEAM);

angle(big_angle) = MAX_BEAM;

75 az_angle_weight_TX = P(1)*angle .^8+P(3)*angle .^6+P(5)*angle...

.^4+P(7)*angle .^2+P(9);

A = -[ RX_x;RX_y];

B = [X’-RX_x;Y’-RX_y];

angle = acos((A’*B)./sqrt(sum(A.^2))./sqrt(sum(B.^2)))*180/pi;

80 big_angle = find(angle >MAX_BEAM);

angle(big_angle) = MAX_BEAM;

az_angle_weight_RX = P(1)*angle .^8+P(3)*angle .^6+P(5)*angle...

.^4+P(7)*angle .^2+P(9);

angle = asin(Z./ r_required_TX)*180/pi ’’;

85 big_angle = find(angle >MAX_BEAM);

angle(big_angle) = MAX_BEAM;

el_angle_weight_TX = P(1)*angle .^8+P(3)*angle .^6+P(5)*angle...

.^4+P(7)*angle .^2+P(9);

angle = asin(Z./ r_required_RX)*180/pi;

90 big_angle = find(angle >MAX_BEAM);

angle(big_angle) = MAX_BEAM;

el_angle_weight_RX = P(1)*angle .^8+P(3)*angle .^6+P(5)*angle...

.^4+P(7)*angle .^2+P(9);

% apply amplitude corrections

95 correction = r_required_TX .* r_required_RX ./ az_angle_weight_TX ’...

./ az_angle_weight_RX ’./ el_angle_weight_TX ./...

el_angle_weight_RX;

correction = correction/max(max(correction));

q_interp = correction .* q_interp;

% form final image through back projection

100 image_data = image_data + reshape(q_interp ,num_pixels (2),...

num_pixels (1));

% plot current image if "movie" is desired

if mov

temp_image = 20* log10(abs(image_data));

105 temp_image = temp_image -max(max(temp_image));

index = find(temp_image <-dyn_range);

temp_image(index) = - dyn_range;

pcolor(x_image ,y_image ,temp_image)

axis equal

110 axis tight

shading flat

pause (0.01)

end

115 % update waitbar

waitbar(i/length(data.az),wait);
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end

120 % close waitbar

close(wait)

% plot final image

clear temp_image;

125 image = 20* log10(abs(image_data));

if norm_on

image = image -norm_value;

else

image = image -max(max(image));

130 end

index = find(image <-dyn_range);

image(index) = - dyn_range;

pcolor(x_image ,y_image ,image)

axis equal

135 axis tight

shading flat

xlabel(’x, m’)

ylabel(’y, m’)

colorbar
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Appendix D. 2-D Monostatic Point Scatterer Simulator

This appendix contains the 2-D monostatic point scatterer simulation code used

to produce the results in Chapter VII. All code is written in Matlabr .

Listing D.1: Simulation constants and parameters.(appendix4/constants.m)
% constants.m

%

% Sets basic constants and parameters for simulation

5 % physical constants

C = 3e8; % speed of light

% file name root

DATANAME = ’data’;

10 CODENAME = ’code’;

IMAGENAME = ’image’;

% collection parameters

VEL = 100; % platform velocity , m/s

15 PRF = 2000; % pulse repetition frequency , m/s

L = 200; % synthetic aperture length , m

% antenna parameters , simple antenna beam

MIN_RANGE_ANT = 75000; % minimum range for antenna ...

pattern , m

20 MAX_RANGE_ANT = 100000; % maxium range for antenna pattern , m

BEAM = 90* pi /180; % beamwidth , rad

% waveform parameters

B = 20 e6; % bandwidth (Hz)

25 M = 100; % number of subpulses

Fc = 10e9; % center frequency (Hz)

Tp = M^2/B; % pulse time (s)

OVER = 2; % oversampling ratio

SAMP_PER_FREQ = 2*M; % samples per frequency subpulse

30 METHOD = 1; % code selection method (1 = LFM , 2 = ...

RND , 3 = SHF);

% set scatterer parameters

POINTS = [

87500* cos (37.0* pi /180) -200 87500* sin (37.0* pi /180) 1;

35 87500* cos (26.7* pi /180) +150 87500* sin (26.7* pi /180) 1;

87500* cos (17.3* pi /180) +300 87500* sin (17.3* pi /180) 1;

87500* cos (8.7*pi /180) -100 87500* sin (8.7*pi /180) 1;

87500* cos (0) 87500* sin (0) 1;

87500* cos (-8.7*pi /180) +300 87500* sin (-8.7*pi /180) 1;

40 87500* cos ( -17.3*pi /180) -350 87500* sin ( -17.3*pi /180) 1;

87500* cos ( -26.7*pi /180) -50 87500* sin ( -26.7*pi /180) 1;

87500* cos ( -37.0*pi /180) +150 87500* sin ( -37.0*pi /180) 1;

];

NUM_SCAT = size(POINTS ,1);
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45

% scene (image) parameters

DIM = 1000; % size of square image , m

NUM_PTS = [512 ,512]; % number of point in final scene

DYN_RANGE = 50; % dynamic range , dB

Listing D.2: Generates raw (e.g., unmatched filtered) echoes.
(appendix4/datagen.m)

% datagen.m

%

% Generates SAR data using specified parameters . Saves each

% pulse in the CPI as a separate file. Echos are saved in

5 % uncompressed form to facilitate image formation through

% various methods.

% prepare workspace

clear all

10 close all

% load constants file

constants

15 % determine cross -range samples for SAR platform

dy = VEL/PRF; % sample spacing

y = [dy:dy:L];

if mod(length(y) ,2) % ensure even number of samples

y = [y y(end)+dy];

20 end

location = y-mean(y); % place origin at aperture center

NUM_PULS = length(y); % number of pulses in CPI

% determine sample times

25 dt = Tp/M/SAMP_PER_FREQ ; % sampling rate , s

t_min = 2* MIN_RANGE_ANT/C; % time of first sample , s

t_max = 2* MAX_RANGE_ANT/C+Tp; % time of last sample , s

T = [ t_min:dt:t_max ];

NUM_SAMP = length(T); % number of samples in each pulse

30 if mod(NUM_SAMP ,2) % ensure even number of samples

T = [T T(end)+dt];

NUM_SAMP = NUM_SAMP +1;

end

35 % set subpulse frequencies

FREQ = linspace(-B/2,B/2,M+1);

delta = diff(FREQ)/2;

FREQ = FREQ (1:end -1)+delta;

FREQ = FREQ+Fc; % shift to center frequency

40

% intialize waitbar

wait = waitbar(0,’Generating SAR Data’);
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% prepare to enter loop

45 data = zeros(1,NUM_SAMP);

width = length(num2str(NUM_PULS));

% loop over each pulse in the CPI

for pulse = 1: NUM_PULS

50

% determine subpulse frequency code using correct method

switch METHOD

case 1 % LFM

code = 1:M;

55 case 2 % Randomized

temp = rand(1,M);

[temp code ] = sort(temp);

case 3 % Shuffled Circulant Matrix

row = mod(pulse -1,M);

60 if row ==0

code_matrix = shfmatrix(M);

end

code = code_matrix(row+1,:);

end

65

% build frequency vector

freq_vec = repmat(FREQ(code),SAMP_PER_FREQ ,1);

freq_vec = freq_vec (:) ’;

70 % calculate range to each scatterer

range = sqrt(( POINTS (:,2)-location(pulse)).^2+( POINTS (:,1))...

.^2) ’;

% calculate the angle (from broadside) to each scatterer

angle = atan2(( POINTS (:,2)-location(pulse)),POINTS (:,1))’;

75

% calculate Dopper frequencies to each scatterer

doppler = 2* VEL*sin(angle)*Fc/C;

% intialize storage variable for composite echo

80 comp_echo = 0;

% loop over each scatterer

for s = 1: NUM_SCAT

85 % find delay to scatterer

delay = 2* range(s)/C;

% find first sample to see an echo

front = T>= delay;

90 front = find(front);

front = front (1);

% extend frequency vector to cover all samples
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ext_freq_vec = [ zeros(1,front -1) freq_vec ];

95 ext_freq_vec = [ ext_freq_vec zeros(1,NUM_SAMP -length(...

ext_freq_vec))];

mask = ext_freq_vec >0;

% generate waveform

echo = exp(j*2*pi*ext_freq_vec .*(T-delay));

100 echo = mask.*echo;

% scale scatterers by amplitude

echo = echo.* POINTS(s,3);

105 % apply antenna pattern

angle_mask = abs(angle(s))<=BEAM /2 & range(s)>...

MIN_RANGE_ANT & range(s)<MAX_RANGE_ANT;

echo = echo.* angle_mask;

% apply doppler shift

110 echo = echo.*exp(j*2*pi*doppler(s)*(T-delay));

% add to other scatterers

comp_echo = comp_echo+echo;

115 end

% convert to baseband

data = comp_echo .*exp(-j*2*pi*(Fc-B/2)*T);

120 % create file name

name = num2str(pulse);

while length(name)<width

name = strcat(’0’,name);

end

125 dataname = strcat(DATANAME ,name);

codename = strcat(CODENAME ,name);

% save data

save(dataname ,’data’);

130 save(codename ,’code’);

% update waitbar

waitbar(pulse/NUM_PULS ,wait);

135 end

% close waitbar

close(wait);
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Listing D.3: Calculates shuffled composite permutation matrix specifying subpulse
frequency order.
(appendix4/shfmatrix.m)

% [matrix ,col ,row ] = shfmatrix(N)

%

% Generates shuffled circulant matrix of size NxN.

% Returns the matrix of N, N-length codes and the 2 keys

5 % needed to generate them. Codes can be read from consecutive

% rows of the output matrix . The 3-D variable matrix stack

% breaks out the individual codes into permutation matricies.

function [matrix ,col ,row ] = shfmatrix(N)

10

% storage matricies

ordered_matrix = [];

col_matrix = zeros(N);

row_matrix = zeros(N);

15

% generate the two keys for reordering the matrix

[temp col ] = sort(rand(1,N));

[temp row ] = sort(rand(1,N));

temp = [1:N];

20

% generate the ordered matrix and swapping matricies

for i = 1:N

ordered_matrix = [ ordered_matrix ; temp];

col_matrix(col(i),i)=1;

25 row_matrix(row(i),i)=1;

temp = circshift(temp ,[0 ,1]);

end

% apply the swapping matricies

30 matrix = ordered_matrix ;

matrix = ( matrix*col_matrix);

matrix = ( matrix ’* row_matrix)’;

% % generate individual permutation matricies

35 % matrix_stack = [];

% for i = 1:N

% % form permutation matrix of intial code

% for j = 1:N

% matrix_stack(matrix(i,j),j,i)=1;

40 % end

% end

% picture = 0;

% for i = 1:N

% picture = picture + i*squeeze(matrix_stack (:,:,i));

45 % end

% end function

return
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Listing D.4: Master file for generating SAR images of all available scatterers.
(appendix4/imagegen.m)

% imagegen.m

%

% Forms and saves complex images of all scatterers in a

% given scene. Assumes relevant data files already generated

5 % with datagen.m

% prepare workspace

clear all

close all

10

% load constants

constants

% prepare to enter loop

15 width = length(num2str(NUM_SCAT));

% loop over all scatterers

for scat = 1: NUM_SCAT

20 % form image of current scatterer

raw_image = BPimage(scat);

% form name of image file

name = num2str(scat);

25 while length(name)<width

name = strcat(’0’,name);

end

imagename = strcat(IMAGENAME ,name);

30 % save image

save(imagename ,’raw_image ’);

end

Listing D.5: Back-projection SAR image formation code.(appendix4/BPimage.m)
% function [ raw_image ] = BPimage(scat);

%

% Form back -projection image of desired scatterer . Uses

% traditional (e.g., far -field) techinques , since low range

5 % resolution and short syntehtic aperture ensure minimal range

% mirgation effects . Requires raw radar echo data and

% appropriate subpulse frequency order codes.

function [ raw_image ] = BPimage(scat);

10

% load constants file

constants
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% extract image center

15 CENTER = [ POINTS(scat ,1:2) ];

% determine cross -range samples for SAR platform

dy = VEL/PRF; % sample spacing

y = [dy:dy:L];

20 if mod(length(y) ,2) % ensure an even number of samples

y = [y y(end)+dy];

end

location = y-mean(y); % place origin at aperture center

NUM_PULS = length(y); % number of pulses in CPI

25

% determine sample times

dt = Tp/M/SAMP_PER_FREQ ; % sampling rate , s

t_min = 2* MIN_RANGE_ANT/C; % time of first sample , s

t_max = 2* MAX_RANGE_ANT/C+Tp; % time of last sample , s

30 T = [ t_min:dt:t_max ];

NUM_SAMP = length(T); % number of samples in each pulse

if mod(NUM_SAMP ,2) % ensure number of samples

T = [T T(end)+dt];

NUM_SAMP = NUM_SAMP +1;

35 end

% set subpulse frequencies

FREQ = linspace(-B/2,B/2,M+1);

delta = diff(FREQ)/2;

40 FREQ = FREQ (1:end -1)+delta;

FREQ = FREQ+Fc; % shift to center frequency

% determine pixel locations in final image

x_image = linspace(-DIM/2, DIM/2, NUM_PTS (1));

45 y_image = linspace(-DIM/2, DIM/2, NUM_PTS (2));

[X,Y] = meshgrid(x_image ,y_image);

X = X(:);

Y = Y(:);

50 % define the back projection filter

H = linspace(-B/2,B/2,NUM_SAMP +1);

delta = diff(H)/2;

H = H(1:end -1)+delta;

H = H+Fc;

55 H = 4*pi*H/C;

% set number of FFT points

num = 2^( nextpow2(NUM_SAMP)+3);

60 % determine radius values for each projection

dr = C/B/2/ OVER*NUM_SAMP/num;

r_exact = dr*[0:num -1];

r_exact = r_exact -mean(r_exact);

r_exact = r_exact ’-dr/2;

65
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% prepare to enter the loop

width = length(num2str(NUM_PULS));

raw_image = zeros(NUM_PTS (1),NUM_PTS (2));

text = strcat ([’Forming BP Image : Scatterer ’,num2str(scat) , ’ of ...

’,num2str(NUM_SCAT)]);

70 wait = waitbar(0,text);

% loop over each pulse

for pulse = 1: NUM_PULS

75 % create file name

name = num2str(pulse);

while length(name)<width

name = strcat(’0’,name);

end

80 dataname = strcat(DATANAME ,name);

codename = strcat(CODENAME ,name);

% load data

load(dataname);

85 load(codename);

% define frequency vector

freq_vec = repmat(FREQ(code),SAMP_PER_FREQ ,1);

freq_vec = freq_vec (:) ’;

90

% define delay to scene center ( after t_min)

ref_delay = 2*( sqrt(( CENTER (2)-location(pulse)).^2+ CENTER (1)...

.^2))/C;

% define angle to scene center

95 angle = atan2(( CENTER (2)-location(pulse)),CENTER (1));

% define doppler to scene center

doppler = 2* VEL*sin(angle)*Fc/C;

100 % find first sample to see an echo

front = T>= ref_delay;

front = find(front);

front = front (1);

105 % extend frequency vector to cover all samples

ext_freq_vec = [ zeros(1,front -1) freq_vec ];

ext_freq_vec = [ ext_freq_vec zeros(1,NUM_SAMP -length(...

ext_freq_vec))];

mask = ext_freq_vec >0;

110 % generate reference waveform

ref = exp(j*2*pi*ext_freq_vec .*(T-ref_delay)).*exp(j*2*pi*...

doppler *(T-ref_delay));

ref = mask.*ref;
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% convert to baseband

115 ref = ref.*exp(-j*2*pi*(Fc -B/2)*T);

% prep for matched filter application

fft_ref = conj(fftshift(fft(ref)));

120 % apply matched filter

data = ( fftshift(fft(data)).* fft_ref);

% generate low -pass versions of the projections

q = ifftshift(ifft((data.*H),num)).’;

125

% calculate the required radii for the image

r_required = X.*cos(angle)+Y.*sin(angle);

% interpolate Q to radii required by the output image

130 q_interp = interp1q(r_exact ,q,r_required).*exp(j*2*pi*(Fc -B/2)...

/C*2* r_required);

% form the image through coherent addition

raw_image = raw_image+reshape(q_interp ,NUM_PTS (1),NUM_PTS (2));

135 % update waitbar

waitbar(pulse/NUM_PULS ,wait);

end

140 % close waitbar

close(wait);

Listing D.6: Calculates the unnormalized image energy.(appendix4/energy.m)
% function [ total_energy ] = energy(scat);

%

% Calculates the unnormalized image energy for use in

% quantifying anti -aliasing performance . Normalization

5 % value determined by cacluating the energy in an

% ’’ideal ’’ image formed from simulation data

% containing only one point scatterer.

function [ total_energy ] = energy(scat);

10

% load constants

constants

% load raw image

15 width = length(num2str(NUM_SCAT));

name = num2str(scat);

while length(name)<width

name = strcat(’0’,name);

end

20 imagename = strcat(IMAGENAME ,name);

load(imagename);
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% calculate image energy

det_image = abs(raw_image)/max(max(abs(raw_image)));

25 det_image = 20* log10(det_image);

small = find(det_image <-DYN_RANGE);

det_image(small) = - DYN_RANGE;

det_image = 10.^( det_image /20);

det_image = det_image .^2;

30 total_energy = sum(sum(det_image));
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